vault backup: 2024-01-02 15:12:18
This commit is contained in:
parent
8b1651fd54
commit
26dc4eba7f
@ -78,6 +78,14 @@
|
||||
"lastUpdated": 1704117184719
|
||||
}
|
||||
}
|
||||
},
|
||||
"c++17带来的代码变化": {
|
||||
"c++17带来的代码变化": {
|
||||
"internalLink": {
|
||||
"count": 1,
|
||||
"lastUpdated": 1704171666800
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -13,13 +13,15 @@ rating: ⭐
|
||||
- [x] gaussian
|
||||
- render - sibr_gaussian
|
||||
- apps - SIBR_gaussianViewer_app
|
||||
- [ ] diff-gaussian-rasterization(CUDA)
|
||||
- [x] diff-gaussian-rasterization(CUDA)
|
||||
# render - sibr_gaussian
|
||||
- picojson:JSON库
|
||||
- rapidxml:XML库
|
||||
- **nanoflann**:是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的KD树。
|
||||
|
||||
## GaussianSurfaceRenderer
|
||||
>主要用于渲染椭圆体,估计是用于Debug用的。
|
||||
|
||||
### GaussianData
|
||||
- GaussianData():通过构造函数形参接受CPU端读取的高斯数据,再通过调用glCreateBuffers()、glNamedBufferStorage()创建GL缓存对象并且初始化,并使用GLuint进行记录(index)。
|
||||
- render:给Shader绑定GL缓存,并且绘制数组实例。
|
||||
@ -58,7 +60,7 @@ rating: ⭐
|
||||
- 初始化3D高斯渲染器对象_gaussianRenderer。
|
||||
- 创建GL缓存对象imageBuffer。
|
||||
- CUDA插值操作。
|
||||
- 绑定3个geomBufferFunc、binningBufferFunc、imgBufferFunc仿函数。
|
||||
- 绑定3个geomBufferFunc、binningBufferFunc、imgBufferFunc仿函数,用来调整CUDA渲染时的缓存大小(创建或者回收内存空间)
|
||||
- onRenderIBR():View的渲染函数。
|
||||
- Ellipsoids(椭圆体渲染):使用_gaussianRenderer->process() 进行渲染。(OpenGL)
|
||||
- Initial Points:`_pointbasedrenderer->process()`渲染点。
|
||||
@ -86,5 +88,223 @@ CUDA文件位于`SIBR_viewers\extlibs\CudaRasterizer\CudaRasterizer\cuda_rasteri
|
||||
6. 计算Alpha。
|
||||
7. 渲染`out_color = vec4(align * colorVert, a);` 也就是colorTexture
|
||||
8. 渲染`out_id = boxID;`也就是idTexture
|
||||
|
||||
# CudaRasterizer
|
||||
**本人没学过CUDA,以下仅仅是对代码的猜测。**
|
||||
额外需要了解Tile渲染方式(具体可以看**Tiled-Based Deferred Rendering(TBDR)**) https://zhuanlan.zhihu.com/p/547943994
|
||||
|
||||
- 屏幕分成`16 * 16`的tile,每个tile进行单独计算。之后对每个像素进行计算。
|
||||
- 取得对应tile中Start与End的位置,对已经排序完的高斯点进行计算,求微分。
|
||||
- 计算当前像素的透明度T
|
||||
- 2D协方差 => power => alpha。
|
||||
- 每次循环都进行`float test_T = T * (1 - alpha)`,当test_T极小时(不透明)则停止循环。
|
||||
- T = test_T。
|
||||
- 计算当前像素的颜色,也就是计算各个方向接受的辐射照度。
|
||||
- `for (int ch = 0; ch < CHANNELS; ch++)`
|
||||
`C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T;`
|
||||
- 计算最终贡献值
|
||||
- 如果当前像素在范围中则输出
|
||||
- `final_T[pix_id]`最终透明度。
|
||||
- `n_contrib[pix_id]`最终贡献值。
|
||||
- `out_color[ch * H * W + pix_id]`最终颜色。`C[ch] + T * bg_color[ch]`
|
||||
|
||||
对屏幕分Tile
|
||||
![[ScreenSpaceTile.jpg]]
|
||||
|
||||
以此减少需要遍历的点云数量。
|
||||
![[TileRange.jpg|500]]
|
||||
|
||||
每个点云相当于空间中当前位置空间的辐射强度分布。
|
||||
![[GS_radiation.jpg]]
|
||||
|
||||
一个像素的渲染会计算这个像素范围内所有的点云的辐射强度、透明度,最后求微分。下图两条横线内相当于一个像素的范围。
|
||||
![[一个像素需要计算范围内所有电源的辐射强度.png|500]]
|
||||
|
||||
## rasterizer_impl.cu
|
||||
- getHigherMsb()
|
||||
- checkFrustum():判断点云是否在视锥内,返回一个bool数组。
|
||||
- duplicateWithKeys()
|
||||
- identifyTileRanges():确定每个Tile的工作起点与终点。
|
||||
- markVisible():标记高斯点云是否处于可视状态。
|
||||
- GeometryState::fromChunk():计算数据块的指针偏移,并且返回创建的GeometryState结构体对象。
|
||||
- ImageState::fromChunk():计算数据块的指针偏移,并且返回创建的ImageState结构体对象。
|
||||
- BinningState::fromChunk():计算数据块的指针偏移,并且返回创建的BinningState结构体对象。
|
||||
- forward():前向渲染可微分光栅化的高斯。具体见下文。
|
||||
- backward():生成优化所需的梯度数据,并传递到forward()。**该项目中目前未被调用**
|
||||
|
||||
相关数据结构体定义在rasterizer_impl.h中:
|
||||
```c++
|
||||
struct GeometryState
|
||||
{
|
||||
size_t scan_size;
|
||||
float* depths;
|
||||
char* scanning_space;
|
||||
bool* clamped;
|
||||
int* internal_radii;
|
||||
float2* means2D;
|
||||
float* cov3D;
|
||||
float4* conic_opacity;
|
||||
float* rgb;
|
||||
uint32_t* point_offsets;
|
||||
uint32_t* tiles_touched;
|
||||
|
||||
static GeometryState fromChunk(char*& chunk, size_t P);
|
||||
};
|
||||
|
||||
struct ImageState
|
||||
{
|
||||
uint2* ranges;
|
||||
uint32_t* n_contrib;
|
||||
float* accum_alpha;
|
||||
|
||||
static ImageState fromChunk(char*& chunk, size_t N);
|
||||
};
|
||||
|
||||
struct BinningState
|
||||
{
|
||||
size_t sorting_size;
|
||||
uint64_t* point_list_keys_unsorted;
|
||||
uint64_t* point_list_keys;
|
||||
uint32_t* point_list_unsorted;
|
||||
uint32_t* point_list;
|
||||
char* list_sorting_space;
|
||||
|
||||
static BinningState fromChunk(char*& chunk, size_t P);
|
||||
};
|
||||
```
|
||||
|
||||
### forward()
|
||||
1. 创建相关变量:GeometryState、ImageState、minn、maxx。
|
||||
2. FORWARD::preprocess()
|
||||
3. 计算所有tile的高斯点云总量。
|
||||
4. 根据需要需要渲染的高斯点云总量来调整CUDA buffer大小。
|
||||
5. 创建BinningState。
|
||||
6. duplicateWithKeys()
|
||||
7. getHigherMsb()
|
||||
8. 对高斯点运行排序。
|
||||
9. cudaMemset(imgState.ranges, 0, tile_grid.x * tile_grid.y * sizeof(uint2));
|
||||
10. 调用identifyTileRanges(),确定每个Tile的工作起点与终点。
|
||||
11. 取得点云颜色数组。
|
||||
12. FORWARD::render()
|
||||
|
||||
## forward.cu
|
||||
### preprocess()
|
||||
在光栅化之前,对每个高斯进行初始化处理。
|
||||
- 只处理在视锥中并且在盒子中的高斯。
|
||||
- 使用投影矩阵对点云的点进行变换,并进行归一化,赋予给新变量p_proj。
|
||||
- 计算协方差矩阵cov3D。
|
||||
- 计算2D屏幕空间的协方差矩阵cov
|
||||
- Invert covariance
|
||||
- Compute extent in screen space (by finding eigenvalues of 2D covariance matrix). Use extent to compute a bounding rectangle of screen-space tiles that this Gaussian overlaps with. Quit if rectangle covers 0 tiles.
|
||||
- 如果没有颜色数据则从球谐函数中计算辐射照度。
|
||||
- 存储当前数据。
|
||||
- `depths[idx]`
|
||||
- `radii[idx]`
|
||||
- `points_xy_image[idx]`
|
||||
- `conic_opacity[idx]`
|
||||
- `tiles_touched[idx]`
|
||||
|
||||
```c++
|
||||
// Invert covariance (EWA algorithm)
|
||||
float det = (cov.x * cov.z - cov.y * cov.y);
|
||||
if (det == 0.0f)
|
||||
return;
|
||||
float det_inv = 1.f / det;
|
||||
float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv };
|
||||
|
||||
// Compute extent in screen space (by finding eigenvalues of
|
||||
// 2D covariance matrix). Use extent to compute a bounding rectangle
|
||||
// of screen-space tiles that this Gaussian overlaps with. Quit if
|
||||
// rectangle covers 0 tiles.
|
||||
float mid = 0.5f * (cov.x + cov.z);
|
||||
float lambda1 = mid + sqrt(max(0.1f, mid * mid - det));
|
||||
float lambda2 = mid - sqrt(max(0.1f, mid * mid - det));
|
||||
float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2)));
|
||||
float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) };
|
||||
uint2 rect_min, rect_max;
|
||||
|
||||
if (rects == nullptr) // More conservative
|
||||
{
|
||||
getRect(point_image, my_radius, rect_min, rect_max, grid);
|
||||
}
|
||||
else // Slightly more aggressive, might need a math cleanup
|
||||
{
|
||||
const int2 my_rect = { (int)ceil(3.f * sqrt(cov.x)), (int)ceil(3.f * sqrt(cov.z)) };
|
||||
rects[idx] = my_rect;
|
||||
getRect(point_image, my_rect, rect_min, rect_max, grid);
|
||||
}
|
||||
|
||||
if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0)
|
||||
return;
|
||||
```
|
||||
|
||||
### render()
|
||||
对所有Tile进行并行计算。针对CUDA核心数量创建对应的Block以及对应数据。`int collected_id[BLOCK_SIZE]、float2 collected_xy[BLOCK_SIZE]、float4 collected_conic_opacity[BLOCK_SIZE]`。
|
||||
|
||||
递归所有的Block,计算透明度、Color以及贡献值(用于计算平均值)。
|
||||
|
||||
```c++
|
||||
// Iterate over batches until all done or range is complete
|
||||
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
|
||||
{
|
||||
// End if entire block votes that it is done rasterizing
|
||||
int num_done = __syncthreads_count(done);
|
||||
if (num_done == BLOCK_SIZE)
|
||||
break;
|
||||
|
||||
// Collectively fetch per-Gaussian data from global to shared
|
||||
int progress = i * BLOCK_SIZE + block.thread_rank();
|
||||
if (range.x + progress < range.y)
|
||||
{ int coll_id = point_list[range.x + progress];
|
||||
collected_id[block.thread_rank()] = coll_id;
|
||||
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
|
||||
collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
|
||||
} block.sync();
|
||||
|
||||
// Iterate over current batch
|
||||
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
|
||||
{ // Keep track of current position in range
|
||||
contributor++;
|
||||
|
||||
// Resample using conic matrix (cf. "Surface
|
||||
// Splatting" by Zwicker et al., 2001)
|
||||
float2 xy = collected_xy[j];
|
||||
float2 d = { xy.x - pixf.x, xy.y - pixf.y };
|
||||
float4 con_o = collected_conic_opacity[j];
|
||||
float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
|
||||
if (power > 0.0f)
|
||||
continue;
|
||||
|
||||
// Eq. (2) from 3D Gaussian splatting paper.
|
||||
// Obtain alpha by multiplying with Gaussian opacity // and its exponential falloff from mean. // Avoid numerical instabilities (see paper appendix).float alpha = min(0.99f, con_o.w * exp(power));
|
||||
if (alpha < 1.0f / 255.0f)
|
||||
continue;
|
||||
float test_T = T * (1 - alpha);
|
||||
if (test_T < 0.0001f)
|
||||
{ done = true;
|
||||
continue;
|
||||
}
|
||||
// Eq. (3) from 3D Gaussian splatting paper.
|
||||
for (int ch = 0; ch < CHANNELS; ch++)
|
||||
C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T;
|
||||
|
||||
T = test_T;
|
||||
|
||||
// Keep track of last range entry to update this
|
||||
// pixel. last_contributor = contributor;
|
||||
}}
|
||||
```
|
||||
|
||||
```c++
|
||||
// All threads that treat valid pixel write out their final
|
||||
// rendering data to the frame and auxiliary buffers.
|
||||
if (inside)
|
||||
{
|
||||
final_T[pix_id] = T;
|
||||
n_contrib[pix_id] = last_contributor;
|
||||
for (int ch = 0; ch < CHANNELS; ch++)
|
||||
out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch];
|
||||
}
|
||||
```
|
||||
# apps - SIBR_gaussianViewer_app
|
||||
调用`gaussianviewer/renderer/GaussianView.hpp`封装的App。
|
BIN
08-Assets/Images/AIGC/GS_radiation.jpg
Normal file
BIN
08-Assets/Images/AIGC/GS_radiation.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 54 KiB |
BIN
08-Assets/Images/AIGC/ScreenSpaceTile.jpg
Normal file
BIN
08-Assets/Images/AIGC/ScreenSpaceTile.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 32 KiB |
BIN
08-Assets/Images/AIGC/TileRange.jpg
Normal file
BIN
08-Assets/Images/AIGC/TileRange.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 41 KiB |
BIN
08-Assets/Images/AIGC/一个像素需要计算范围内所有电源的辐射强度.png
Normal file
BIN
08-Assets/Images/AIGC/一个像素需要计算范围内所有电源的辐射强度.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
Loading…
x
Reference in New Issue
Block a user