vault backup: 2024-06-20 19:05:41
This commit is contained in:
parent
3981a6091a
commit
32001bcf8c
@ -1,3 +1,7 @@
|
||||
# TODO
|
||||
- [ ] [[#BasePass]]
|
||||
- [ ] [[#DeferredShadingCommon.ush]]
|
||||
|
||||
# Common
|
||||
## Common.ush
|
||||
添加结构体,主要用在材质的CustomNode里。
|
||||
@ -29,18 +33,377 @@ struct FToonShadingPerMaterialCustomData
|
||||
static FToonShadingPerMaterialCustomData ToonShadingPerMaterialCustomData;
|
||||
```
|
||||
|
||||
|
||||
## DeferredShadingCommon.ush
|
||||
|
||||
|
||||
# BasePass
|
||||
BasePassPixelShader.usf
|
||||
|
||||
# Lighting
|
||||
|
||||
## ShadingModels
|
||||
### ShadingCommon.ush
|
||||
1. 添加ShadingModelID宏:
|
||||
- SHADINGMODELID_TOON_BASE 13
|
||||
-
|
||||
**添加ShadingModelID宏**:
|
||||
- SHADINGMODELID_TOON_BASE 13
|
||||
- SHADINGMODELID_TOON_PBR 14
|
||||
- SHADINGMODELID_TOON_SKIN 15
|
||||
- SHADINGMODELID_NUM 16
|
||||
|
||||
判断是否是IsToonShadingModel:
|
||||
```c++
|
||||
bool IsToonShadingModel(uint ShadingModel)
|
||||
{
|
||||
uint4 ToonShadingModels = uint4(SHADINGMODELID_TOON_BASE, SHADINGMODELID_TOON_PBR, SHADINGMODELID_TOON_SKIN, 0xFF);
|
||||
return any(ShadingModel.xxxx == ToonShadingModels);
|
||||
}
|
||||
```
|
||||
## DeferredLightingCommon.ush
|
||||
修改了AccumulateDynamicLighting()的逻辑。
|
||||
```c++
|
||||
FLightAccumulator AccumulateDynamicLighting(
|
||||
float3 TranslatedWorldPosition, half3 CameraVector, FGBufferData GBuffer, half AmbientOcclusion, uint ShadingModelID,
|
||||
FDeferredLightData LightData, half4 LightAttenuation, float Dither, uint2 SVPos,
|
||||
inout float SurfaceShadow)
|
||||
{
|
||||
FLightAccumulator LightAccumulator = (FLightAccumulator)0;
|
||||
|
||||
half3 V = -CameraVector;
|
||||
half3 N = GBuffer.WorldNormal;
|
||||
BRANCH if( GBuffer.ShadingModelID == SHADINGMODELID_CLEAR_COAT && CLEAR_COAT_BOTTOM_NORMAL)
|
||||
{
|
||||
const float2 oct1 = ((float2(GBuffer.CustomData.a, GBuffer.CustomData.z) * 4) - (512.0/255.0)) + UnitVectorToOctahedron(GBuffer.WorldNormal);
|
||||
N = OctahedronToUnitVector(oct1);
|
||||
}
|
||||
|
||||
float3 L = LightData.Direction; // Already normalized
|
||||
float3 ToLight = L;
|
||||
float3 MaskedLightColor = LightData.Color;
|
||||
float LightMask = 1;
|
||||
if (LightData.bRadialLight)
|
||||
{
|
||||
LightMask = GetLocalLightAttenuation( TranslatedWorldPosition, LightData, ToLight, L );
|
||||
MaskedLightColor *= LightMask;
|
||||
}
|
||||
|
||||
LightAccumulator.EstimatedCost += 0.3f; // running the PixelShader at all has a cost
|
||||
|
||||
BRANCH
|
||||
if( LightMask > 0 )
|
||||
{
|
||||
FShadowTerms Shadow;
|
||||
Shadow.SurfaceShadow = AmbientOcclusion;
|
||||
Shadow.TransmissionShadow = 1;
|
||||
Shadow.TransmissionThickness = 1;
|
||||
Shadow.HairTransmittance.OpaqueVisibility = 1;
|
||||
const float ContactShadowOpacity = GBuffer.CustomData.a;
|
||||
GetShadowTerms(GBuffer.Depth, GBuffer.PrecomputedShadowFactors, GBuffer.ShadingModelID, ContactShadowOpacity,
|
||||
LightData, TranslatedWorldPosition, L, LightAttenuation, Dither, Shadow);
|
||||
SurfaceShadow = Shadow.SurfaceShadow;
|
||||
|
||||
LightAccumulator.EstimatedCost += 0.3f; // add the cost of getting the shadow terms
|
||||
|
||||
#if SHADING_PATH_MOBILE
|
||||
const bool bNeedsSeparateSubsurfaceLightAccumulation = UseSubsurfaceProfile(GBuffer.ShadingModelID);
|
||||
|
||||
FDirectLighting Lighting = (FDirectLighting)0;
|
||||
|
||||
half NoL = max(0, dot(GBuffer.WorldNormal, L));
|
||||
#if TRANSLUCENCY_NON_DIRECTIONAL
|
||||
NoL = 1.0f;
|
||||
#endif
|
||||
Lighting = EvaluateBxDF(GBuffer, N, V, L, NoL, Shadow);
|
||||
|
||||
Lighting.Specular *= LightData.SpecularScale;
|
||||
|
||||
LightAccumulator_AddSplit( LightAccumulator, Lighting.Diffuse, Lighting.Specular, Lighting.Diffuse, MaskedLightColor * Shadow.SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation );
|
||||
LightAccumulator_AddSplit( LightAccumulator, Lighting.Transmission, 0.0f, Lighting.Transmission, MaskedLightColor * Shadow.TransmissionShadow, bNeedsSeparateSubsurfaceLightAccumulation );
|
||||
#else // SHADING_PATH_MOBILE
|
||||
//修改了这里
|
||||
bool UseToonShadow = IsToonShadingModel(GBuffer.ShadingModelID);
|
||||
BRANCH
|
||||
if( Shadow.SurfaceShadow + Shadow.TransmissionShadow > 0 || UseToonShadow)//修改结束
|
||||
{
|
||||
const bool bNeedsSeparateSubsurfaceLightAccumulation = UseSubsurfaceProfile(GBuffer.ShadingModelID);
|
||||
//修改了这里
|
||||
BRANCH
|
||||
if(UseToonShadow)
|
||||
{
|
||||
float NoL = dot(N, L);
|
||||
float ToonNoL = min(NoL, GBuffer.ToonForceShadow);
|
||||
//合并SurfaceShadow以及Transmision Shadow
|
||||
Shadow.SurfaceShadow = min(Shadow.SurfaceShadow, Shadow.TransmissionShadow);
|
||||
|
||||
//根据ToonShadowSmoothness、ToonShadowLocation、NoL计算阴影亮度,最后计算主阴影颜色。
|
||||
float RangeHalf = GBuffer.ToonShadowSmoothness * 0.5;
|
||||
float RangeMin = max(0.0, GBuffer.ToonShadowLocation - RangeHalf);
|
||||
float RangeMax = min(1.0, GBuffer.ToonShadowLocation + RangeHalf);
|
||||
float ShadowIntensity = Shadow.SurfaceShadow * smoothstep(RangeMin, RangeMax, ToonNoL);
|
||||
GBuffer.ToonCalcShadowColor = lerp(GBuffer.ToonShadowColor * LightData.SpecularScale, (1.0).xxx, ShadowIntensity);
|
||||
|
||||
//计算次级阴影颜色,并最终合成。
|
||||
RangeHalf = GBuffer.ToonSecondaryShadowSmoothness * 0.5;
|
||||
RangeMin = max(0.0, GBuffer.ToonSecondaryShadowLocation - RangeHalf);
|
||||
RangeMax = min(1.0, GBuffer.ToonSecondaryShadowLocation + RangeHalf);
|
||||
ShadowIntensity = Shadow.SurfaceShadow * smoothstep(RangeMin, RangeMax, ToonNoL);
|
||||
GBuffer.ToonCalcShadowColor = lerp(GBuffer.ToonSecondaryShadowColor * LightData.SpecularScale, GBuffer.ToonCalcShadowColor, ShadowIntensity);
|
||||
}
|
||||
//修改结束
|
||||
|
||||
#if NON_DIRECTIONAL_DIRECT_LIGHTING
|
||||
float Lighting;
|
||||
|
||||
if( LightData.bRectLight )
|
||||
{
|
||||
FRect Rect = GetRect( ToLight, LightData );
|
||||
|
||||
Lighting = IntegrateLight( Rect );
|
||||
}
|
||||
else
|
||||
{
|
||||
FCapsuleLight Capsule = GetCapsule( ToLight, LightData );
|
||||
|
||||
Lighting = IntegrateLight( Capsule, LightData.bInverseSquared );
|
||||
}
|
||||
|
||||
float3 LightingDiffuse = Diffuse_Lambert( GBuffer.DiffuseColor ) * Lighting;
|
||||
LightAccumulator_AddSplit(LightAccumulator, LightingDiffuse, 0.0f, 0, MaskedLightColor * Shadow.SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation);
|
||||
#else
|
||||
FDirectLighting Lighting;
|
||||
|
||||
if (LightData.bRectLight)
|
||||
{
|
||||
FRect Rect = GetRect( ToLight, LightData );
|
||||
const FRectTexture SourceTexture = ConvertToRectTexture(LightData);
|
||||
|
||||
#if REFERENCE_QUALITY
|
||||
Lighting = IntegrateBxDF( GBuffer, N, V, Rect, Shadow, SourceTexture, SVPos );
|
||||
#else
|
||||
Lighting = IntegrateBxDF( GBuffer, N, V, Rect, Shadow, SourceTexture);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
FCapsuleLight Capsule = GetCapsule( ToLight, LightData );
|
||||
|
||||
#if REFERENCE_QUALITY
|
||||
Lighting = IntegrateBxDF( GBuffer, N, V, Capsule, Shadow, SVPos );
|
||||
#else
|
||||
Lighting = IntegrateBxDF( GBuffer, N, V, Capsule, Shadow, LightData.bInverseSquared );
|
||||
#endif
|
||||
}
|
||||
//修改了这里
|
||||
float SurfaceShadow = UseToonShadow ? 1.0 : Shadow.SurfaceShadow;
|
||||
float TransmissionShadow = UseToonShadow ? 1.0 : Shadow.TransmissionShadow;
|
||||
Lighting.Specular *= UseToonShadow ? GBuffer.ToonSpecularColor : LightData.SpecularScale;
|
||||
|
||||
LightAccumulator_AddSplit( LightAccumulator, Lighting.Diffuse, Lighting.Specular, Lighting.Diffuse, MaskedLightColor * SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation );
|
||||
LightAccumulator_AddSplit( LightAccumulator, Lighting.Transmission, 0.0f, Lighting.Transmission, MaskedLightColor * TransmissionShadow, bNeedsSeparateSubsurfaceLightAccumulation );
|
||||
//修改结束
|
||||
LightAccumulator.EstimatedCost += 0.4f; // add the cost of the lighting computations (should sum up to 1 form one light)
|
||||
#endif
|
||||
}
|
||||
#endif // SHADING_PATH_MOBILE
|
||||
}
|
||||
return LightAccumulator;
|
||||
}
|
||||
```
|
||||
|
||||
## ShadingModels.ush
|
||||
```c++
|
||||
float3 ToonSpecular(float ToonSpecularLocation, float ToonSpecularSmoothness, float3 ToonSpecularColor, float NoL)
|
||||
{
|
||||
float ToonSpecularRangeHalf = ToonSpecularSmoothness * 0.5;
|
||||
float ToonSpecularRangeMin = ToonSpecularLocation - ToonSpecularRangeHalf;
|
||||
float ToonSpecularRangeMax = ToonSpecularLocation + ToonSpecularRangeHalf;
|
||||
return smoothstep(ToonSpecularRangeMin, ToonSpecularRangeMax, NoL) * ToonSpecularColor;
|
||||
}
|
||||
```
|
||||
|
||||
创建了ToonCustomBxDF(**SHADINGMODELID_TOON_BASE**)与ToonLitBxDF(**SHADINGMODELID_TOON_PBR**、**SHADINGMODELID_TOON_SKIN**)2个ShadingModel函数。
|
||||
|
||||
### ToonCustomBxDF的修改
|
||||
Diffuse里面乘以之前在DeferredShadingCommon.ush中计算好的ShadowColor(已经计算了NoL)
|
||||
`Lighting.Diffuse *= AreaLight.FalloffColor * (Falloff * NoL);`
|
||||
=>
|
||||
`Lighting.Diffuse *= AreaLight.FalloffColor * Falloff * GBuffer.ToonCalcShadowColor;`
|
||||
|
||||
Speuclar直接归零,具体是在BasePass阶段进行计算了。
|
||||
`Lighting.Specular = 0;`
|
||||
### ToonLitBxDF的修改
|
||||
Diffuse里面乘以之前在DeferredShadingCommon.ush中计算好的ShadowColor(已经计算了NoL)
|
||||
`Lighting.Diffuse *= AreaLight.FalloffColor * (Falloff * NoL);`
|
||||
=>
|
||||
`Lighting.Diffuse *= AreaLight.FalloffColor * Falloff * GBuffer.ToonCalcShadowColor;`
|
||||
|
||||
Speuclar最后乘以了**Shadow.SurfaceShadow**
|
||||
`Lighting.Specular *= Shadow.SurfaceShadow;`
|
||||
|
||||
|
||||
|
||||
```c++
|
||||
|
||||
FDirectLighting ToonLitBxDF( FGBufferData GBuffer, half3 N, half3 V, half3 L, float Falloff, half NoL, FAreaLight AreaLight, FShadowTerms Shadow )
|
||||
{
|
||||
BxDFContext Context;
|
||||
FDirectLighting Lighting;
|
||||
|
||||
#if SUPPORTS_ANISOTROPIC_MATERIALS
|
||||
bool bHasAnisotropy = HasAnisotropy(GBuffer.SelectiveOutputMask);
|
||||
#else
|
||||
bool bHasAnisotropy = false;
|
||||
#endif
|
||||
|
||||
float NoV, VoH, NoH;
|
||||
BRANCH
|
||||
if (bHasAnisotropy)
|
||||
{
|
||||
half3 X = GBuffer.WorldTangent;
|
||||
half3 Y = normalize(cross(N, X));
|
||||
Init(Context, N, X, Y, V, L);
|
||||
|
||||
NoV = Context.NoV;
|
||||
VoH = Context.VoH;
|
||||
NoH = Context.NoH;
|
||||
}
|
||||
else
|
||||
{
|
||||
#if SHADING_PATH_MOBILE
|
||||
InitMobile(Context, N, V, L, NoL);
|
||||
#else
|
||||
Init(Context, N, V, L);
|
||||
#endif
|
||||
|
||||
NoV = Context.NoV;
|
||||
VoH = Context.VoH;
|
||||
NoH = Context.NoH;
|
||||
|
||||
SphereMaxNoH(Context, AreaLight.SphereSinAlpha, true);
|
||||
}
|
||||
|
||||
Context.NoV = saturate(abs( Context.NoV ) + 1e-5);
|
||||
|
||||
#if MATERIAL_ROUGHDIFFUSE
|
||||
// Chan diffuse model with roughness == specular roughness. This is not necessarily a good modelisation of reality because when the mean free path is super small, the diffuse can in fact looks rougher. But this is a start.
|
||||
// Also we cannot use the morphed context maximising NoH as this is causing visual artefact when interpolating rough/smooth diffuse response.
|
||||
Lighting.Diffuse = Diffuse_Chan(GBuffer.DiffuseColor, Pow4(GBuffer.Roughness), NoV, NoL, VoH, NoH, GetAreaLightDiffuseMicroReflWeight(AreaLight));
|
||||
#else
|
||||
Lighting.Diffuse = Diffuse_Lambert(GBuffer.DiffuseColor);
|
||||
#endif
|
||||
// Toon Diffuse
|
||||
Lighting.Diffuse *= AreaLight.FalloffColor * Falloff * GBuffer.ToonCalcShadowColor;
|
||||
|
||||
BRANCH
|
||||
if (bHasAnisotropy)
|
||||
{
|
||||
//Lighting.Specular = GBuffer.WorldTangent * .5f + .5f;
|
||||
Lighting.Specular = AreaLight.FalloffColor * (Falloff * NoL) * SpecularGGX(GBuffer.Roughness, GBuffer.Anisotropy, GBuffer.SpecularColor, Context, NoL, AreaLight);
|
||||
}
|
||||
else
|
||||
{
|
||||
if( IsRectLight(AreaLight) )
|
||||
{
|
||||
Lighting.Specular = RectGGXApproxLTC(GBuffer.Roughness, GBuffer.SpecularColor, N, V, AreaLight.Rect, AreaLight.Texture);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Toon specular
|
||||
Lighting.Specular = AreaLight.FalloffColor * (Falloff * NoL) * SpecularGGX(GBuffer.Roughness, GBuffer.SpecularColor, Context, NoL, AreaLight);
|
||||
}
|
||||
}
|
||||
Lighting.Specular *= Shadow.SurfaceShadow;
|
||||
|
||||
FBxDFEnergyTerms EnergyTerms = ComputeGGXSpecEnergyTerms(GBuffer.Roughness, Context.NoV, GBuffer.SpecularColor);
|
||||
|
||||
// Add energy presevation (i.e. attenuation of the specular layer onto the diffuse component
|
||||
Lighting.Diffuse *= ComputeEnergyPreservation(EnergyTerms);
|
||||
|
||||
// Add specular microfacet multiple scattering term (energy-conservation)
|
||||
Lighting.Specular *= ComputeEnergyConservation(EnergyTerms);
|
||||
|
||||
Lighting.Transmission = 0;
|
||||
return Lighting;
|
||||
}
|
||||
|
||||
FDirectLighting ToonCustomBxDF( FGBufferData GBuffer, half3 N, half3 V, half3 L, float Falloff, half NoL, FAreaLight AreaLight, FShadowTerms Shadow )
|
||||
{
|
||||
BxDFContext Context;
|
||||
FDirectLighting Lighting;
|
||||
|
||||
float NoV, VoH, NoH;
|
||||
#if SHADING_PATH_MOBILE
|
||||
InitMobile(Context, N, V, L, NoL);
|
||||
#else
|
||||
Init(Context, N, V, L);
|
||||
#endif
|
||||
NoV = Context.NoV;
|
||||
VoH = Context.VoH;
|
||||
NoH = Context.NoH;
|
||||
|
||||
SphereMaxNoH(Context, AreaLight.SphereSinAlpha, true);
|
||||
|
||||
Context.NoV = saturate(abs( Context.NoV ) + 1e-5);
|
||||
|
||||
#if MATERIAL_ROUGHDIFFUSE
|
||||
// Chan diffuse model with roughness == specular roughness. This is not necessarily a good modelisation of reality because when the mean free path is super small, the diffuse can in fact looks rougher. But this is a start.
|
||||
// Also we cannot use the morphed context maximising NoH as this is causing visual artefact when interpolating rough/smooth diffuse response.
|
||||
Lighting.Diffuse = Diffuse_Chan(GBuffer.DiffuseColor, Pow4(GBuffer.Roughness), NoV, NoL, VoH, NoH, GetAreaLightDiffuseMicroReflWeight(AreaLight));
|
||||
#else
|
||||
Lighting.Diffuse = Diffuse_Lambert(GBuffer.DiffuseColor);
|
||||
#endif
|
||||
// Toon Diffuse
|
||||
Lighting.Diffuse *= AreaLight.FalloffColor * Falloff * GBuffer.ToonCalcShadowColor;
|
||||
|
||||
// Toon specular
|
||||
// Lighting.Specular = AreaLight.FalloffColor * (Falloff * NoL) * ToonSpecular(GBuffer.ToonSpecularLocation, GBuffer.ToonSpecularSmoothness, GBuffer.ToonSpecularColor, NoL);
|
||||
// Lighting.Specular *= Shadow.SurfaceShadow;
|
||||
|
||||
// FBxDFEnergyTerms EnergyTerms = ComputeGGXSpecEnergyTerms(GBuffer.Roughness, Context.NoV, GBuffer.SpecularColor);
|
||||
|
||||
// Add energy presevation (i.e. attenuation of the specular layer onto the diffuse component
|
||||
// Lighting.Diffuse *= ComputeEnergyPreservation(EnergyTerms);
|
||||
|
||||
Lighting.Specular = 0;
|
||||
Lighting.Transmission = 0;
|
||||
return Lighting;
|
||||
}
|
||||
|
||||
FDirectLighting IntegrateBxDF( FGBufferData GBuffer, half3 N, half3 V, half3 L, float Falloff, half NoL, FAreaLight AreaLight, FShadowTerms Shadow )
|
||||
{
|
||||
switch( GBuffer.ShadingModelID )
|
||||
{
|
||||
case SHADINGMODELID_DEFAULT_LIT:
|
||||
case SHADINGMODELID_SINGLELAYERWATER:
|
||||
case SHADINGMODELID_THIN_TRANSLUCENT:
|
||||
return DefaultLitBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_SUBSURFACE:
|
||||
return SubsurfaceBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_PREINTEGRATED_SKIN:
|
||||
return PreintegratedSkinBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_CLEAR_COAT:
|
||||
return ClearCoatBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_SUBSURFACE_PROFILE:
|
||||
return SubsurfaceProfileBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_TWOSIDED_FOLIAGE:
|
||||
return TwoSidedBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_HAIR:
|
||||
return HairBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_CLOTH:
|
||||
return ClothBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_EYE:
|
||||
return EyeBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_TOON_BASE:
|
||||
return ToonCustomBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
case SHADINGMODELID_TOON_PBR:
|
||||
case SHADINGMODELID_TOON_SKIN:
|
||||
return ToonLitBxDF( GBuffer, N, V, L, Falloff, NoL, AreaLight, Shadow );
|
||||
default:
|
||||
return (FDirectLighting)0;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## DeferredLightPixelShaders.usf
|
||||
# PostProcess
|
||||
## ToneMapping
|
||||
c++部分主要修改了:
|
||||
@ -51,8 +414,6 @@ c++部分主要修改了:
|
||||
***实现向ToneMaper Shader传递 `TRDGUniformBufferRef<FSceneTextureUniformParameters>`的功能***
|
||||
|
||||
之后再PostProcessTonemap.usf中,对**CustomStencil**进行判断,如果为true,则直接返回之前渲染结果。实际上BufferVisualization里根本看不出来。
|
||||
|
||||
|
||||
```c++
|
||||
#include "DeferredShadingCommon.ush"
|
||||
|
||||
@ -86,4 +447,34 @@ void MainPS(
|
||||
}
|
||||
```
|
||||
|
||||
## Lut
|
||||
## PostProcessCombineLUT.usf
|
||||
主要移植了UE4版本的LUT,以此保证效果统一。
|
||||
|
||||
# 其他
|
||||
## GpuSkinCacheComputeShader.usf
|
||||
注释2行代码,用处不明。
|
||||
```c++
|
||||
#if GPUSKIN_MORPH_BLEND
|
||||
{
|
||||
Intermediates.UnpackedPosition += Unpacked.DeltaPosition;
|
||||
// calc new normal by offseting it with the delta
|
||||
LocalTangentZ = normalize( LocalTangentZ + Unpacked.DeltaTangentZ);
|
||||
// derive the new tangent by orthonormalizing the new normal against
|
||||
// the base tangent vector (assuming these are normalized)
|
||||
LocalTangentX = normalize( LocalTangentX - (dot(LocalTangentX, LocalTangentZ) * LocalTangentZ) );
|
||||
}#else
|
||||
#if GPUSKIN_APEX_CLOTH
|
||||
```
|
||||
=>
|
||||
```c++
|
||||
#if GPUSKIN_MORPH_BLEND
|
||||
{
|
||||
Intermediates.UnpackedPosition += Unpacked.DeltaPosition;
|
||||
// calc new normal by offseting it with the delta
|
||||
//LocalTangentZ = normalize( LocalTangentZ + Unpacked.DeltaTangentZ);
|
||||
// derive the new tangent by orthonormalizing the new normal against
|
||||
// the base tangent vector (assuming these are normalized)
|
||||
//LocalTangentX = normalize( LocalTangentX - (dot(LocalTangentX, LocalTangentZ) * LocalTangentZ) );
|
||||
}#else
|
||||
#if GPUSKIN_APEX_CLOTH
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user