vault backup: 2024-02-05 09:54:25
This commit is contained in:
parent
491a20299b
commit
37ae208d98
@ -0,0 +1,9 @@
|
||||
---
|
||||
title: 剖析虚幻渲染体系(09)- 材质体系
|
||||
date: 2024-02-04 21:44:37
|
||||
excerpt:
|
||||
tags:
|
||||
rating: ⭐
|
||||
---
|
||||
# 前言
|
||||
https://www.cnblogs.com/timlly/p/15109132.html
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
title: 剖析虚幻渲染体系(08)- Shader体系
|
||||
date: 2024-02-04 21:44:10
|
||||
excerpt:
|
||||
tags:
|
||||
rating: ⭐
|
||||
---
|
||||
# 前言
|
||||
https://www.cnblogs.com/timlly/p/15092257.html
|
@ -48,7 +48,10 @@ rating: ⭐
|
||||
- D3D12存储了FD3D12Adapter* Adapter、FD3D12CommandContext* CmdContext、 FD3D12CommandContextRedirector* CmdContextRedirector。
|
||||
- FDynamicRHI:FDynamicRHI是由动态绑定的RHI实现的接口,它定义的接口和CommandList、CommandContext比较相似。
|
||||
- 代码详见[[#FDynamicRHI]]
|
||||
- FRHICommandListExecutor
|
||||
- FRHICommandListExecutor:负责将**Renderer层的RHI中间指令转译(或直接调用)到目标平台的图形API**,它在RHI体系中起着举足轻重的作用。
|
||||
- FParallelCommandListSet:用于实现并行渲染。使用案例详见[[#FParallelCommandListSet]]。目前5.3只有下面2个子类:
|
||||
- FRDGParallelCommandListSet
|
||||
- FShadowParallelCommandListSet
|
||||
|
||||
## FDynamicRHI
|
||||
```c++
|
||||
@ -200,3 +203,535 @@ class RHI_API FDynamicRHI
|
||||
|
||||
>需要注意的是,传统图形API(D3D11、OpenGL)除了继承FDynamicRHI,还需要继承**IRHICommandContextPSOFallback**,因为需要借助后者的接口处理PSO的数据和行为,以保证传统和现代API对PSO的一致处理行为。也正因为此,现代图形API(D3D12、Vulkan、Metal)不需要继承**IRHICommandContext**的任何继承体系的类型,单单直接继承**FDynamicRHI**就可以处理RHI层的所有数据和操作。
|
||||
既然现代图形API(D3D12、Vulkan、Metal)的**DynamicRHI**没有继承**IRHICommandContext**的任何继承体系的类型,那么它们是如何实现FDynamicRHI::RHIGetDefaultContext的接口?下面以FD3D12DynamicRHI为例:
|
||||
|
||||
## FParallelCommandListSet
|
||||
```c++
|
||||
//Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp
|
||||
void FDeferredShadingSceneRenderer::RenderPrePass(FRDGBuilder& GraphBuilder, FRDGTextureRef SceneDepthTexture, FInstanceCullingManager& InstanceCullingManager, FRDGTextureRef* FirstStageDepthBuffer)
|
||||
{
|
||||
RDG_EVENT_SCOPE(GraphBuilder, "PrePass %s %s", GetDepthDrawingModeString(DepthPass.EarlyZPassMode), GetDepthPassReason(DepthPass.bDitheredLODTransitionsUseStencil, ShaderPlatform));
|
||||
RDG_CSV_STAT_EXCLUSIVE_SCOPE(GraphBuilder, RenderPrePass);
|
||||
RDG_GPU_STAT_SCOPE(GraphBuilder, Prepass);
|
||||
|
||||
SCOPED_NAMED_EVENT(FDeferredShadingSceneRenderer_RenderPrePass, FColor::Emerald);
|
||||
SCOPE_CYCLE_COUNTER(STAT_DepthDrawTime);
|
||||
|
||||
const bool bParallelDepthPass = GRHICommandList.UseParallelAlgorithms() && CVarParallelPrePass.GetValueOnRenderThread();
|
||||
|
||||
RenderPrePassHMD(GraphBuilder, SceneDepthTexture);
|
||||
|
||||
if (DepthPass.IsRasterStencilDitherEnabled())
|
||||
{
|
||||
AddDitheredStencilFillPass(GraphBuilder, Views, SceneDepthTexture, DepthPass);
|
||||
}
|
||||
|
||||
auto RenderDepthPass = [&](uint8 DepthMeshPass)
|
||||
{
|
||||
check(DepthMeshPass == EMeshPass::DepthPass || DepthMeshPass == EMeshPass::SecondStageDepthPass);
|
||||
const bool bSecondStageDepthPass = DepthMeshPass == EMeshPass::SecondStageDepthPass;
|
||||
|
||||
if (bParallelDepthPass)
|
||||
{
|
||||
RDG_WAIT_FOR_TASKS_CONDITIONAL(GraphBuilder, IsDepthPassWaitForTasksEnabled());
|
||||
|
||||
for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
|
||||
{
|
||||
FViewInfo& View = Views[ViewIndex];
|
||||
RDG_GPU_MASK_SCOPE(GraphBuilder, View.GPUMask);
|
||||
RDG_EVENT_SCOPE_CONDITIONAL(GraphBuilder, Views.Num() > 1, "View%d", ViewIndex);
|
||||
|
||||
FMeshPassProcessorRenderState DrawRenderState;
|
||||
SetupDepthPassState(DrawRenderState);
|
||||
|
||||
const bool bShouldRenderView = View.ShouldRenderView() && (bSecondStageDepthPass ? View.bUsesSecondStageDepthPass : true);
|
||||
if (bShouldRenderView)
|
||||
{
|
||||
View.BeginRenderView();
|
||||
|
||||
FDepthPassParameters* PassParameters = GetDepthPassParameters(GraphBuilder, View, SceneDepthTexture);
|
||||
View.ParallelMeshDrawCommandPasses[DepthMeshPass].BuildRenderingCommands(GraphBuilder, Scene->GPUScene, PassParameters->InstanceCullingDrawParams);
|
||||
|
||||
GraphBuilder.AddPass(
|
||||
bSecondStageDepthPass ? RDG_EVENT_NAME("SecondStageDepthPassParallel") : RDG_EVENT_NAME("DepthPassParallel"),
|
||||
PassParameters,
|
||||
ERDGPassFlags::Raster | ERDGPassFlags::SkipRenderPass,
|
||||
[this, &View, PassParameters, DepthMeshPass](const FRDGPass* InPass, FRHICommandListImmediate& RHICmdList)
|
||||
{
|
||||
//并行渲染逻辑主要在这里
|
||||
FRDGParallelCommandListSet ParallelCommandListSet(InPass, RHICmdList, GET_STATID(STAT_CLP_Prepass), View, FParallelCommandListBindings(PassParameters));
|
||||
ParallelCommandListSet.SetHighPriority();
|
||||
View.ParallelMeshDrawCommandPasses[DepthMeshPass].DispatchDraw(&ParallelCommandListSet, RHICmdList, &PassParameters->InstanceCullingDrawParams);
|
||||
});
|
||||
|
||||
RenderPrePassEditorPrimitives(GraphBuilder, View, PassParameters, DrawRenderState, DepthPass.EarlyZPassMode, InstanceCullingManager);
|
||||
}
|
||||
}
|
||||
}
|
||||
···
|
||||
}
|
||||
|
||||
//Engine\Source\Runtime\Renderer\Private\MeshDrawCommands.cpp
|
||||
void FParallelMeshDrawCommandPass::DispatchDraw(FParallelCommandListSet* ParallelCommandListSet, FRHICommandList& RHICmdList, const FInstanceCullingDrawParams* InstanceCullingDrawParams) const
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(ParallelMdcDispatchDraw);
|
||||
if (MaxNumDraws <= 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
FMeshDrawCommandOverrideArgs OverrideArgs;
|
||||
if (InstanceCullingDrawParams)
|
||||
{
|
||||
OverrideArgs = GetMeshDrawCommandOverrideArgs(*InstanceCullingDrawParams);
|
||||
}
|
||||
|
||||
if (ParallelCommandListSet)
|
||||
{
|
||||
const ENamedThreads::Type RenderThread = ENamedThreads::GetRenderThread();
|
||||
|
||||
FGraphEventArray Prereqs;
|
||||
if (ParallelCommandListSet->GetPrereqs())
|
||||
{
|
||||
Prereqs.Append(*ParallelCommandListSet->GetPrereqs());
|
||||
}
|
||||
if (TaskEventRef.IsValid())
|
||||
{
|
||||
Prereqs.Add(TaskEventRef);
|
||||
}
|
||||
|
||||
// Distribute work evenly to the available task graph workers based on NumEstimatedDraws.
|
||||
// Every task will then adjust it's working range based on FVisibleMeshDrawCommandProcessTask results.
|
||||
const int32 NumThreads = FMath::Min<int32>(FTaskGraphInterface::Get().GetNumWorkerThreads(), ParallelCommandListSet->Width);
|
||||
const int32 NumTasks = FMath::Min<int32>(NumThreads, FMath::DivideAndRoundUp(MaxNumDraws, ParallelCommandListSet->MinDrawsPerCommandList));
|
||||
const int32 NumDrawsPerTask = FMath::DivideAndRoundUp(MaxNumDraws, NumTasks);
|
||||
|
||||
for (int32 TaskIndex = 0; TaskIndex < NumTasks; TaskIndex++)
|
||||
{
|
||||
const int32 StartIndex = TaskIndex * NumDrawsPerTask;
|
||||
const int32 NumDraws = FMath::Min(NumDrawsPerTask, MaxNumDraws - StartIndex);
|
||||
checkSlow(NumDraws > 0);
|
||||
|
||||
FRHICommandList* CmdList = ParallelCommandListSet->NewParallelCommandList();
|
||||
|
||||
FGraphEventRef AnyThreadCompletionEvent = TGraphTask<FDrawVisibleMeshCommandsAnyThreadTask>::CreateTask(&Prereqs, RenderThread)
|
||||
.ConstructAndDispatchWhenReady(*CmdList, TaskContext.InstanceCullingContext, TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet,
|
||||
OverrideArgs,
|
||||
TaskContext.InstanceFactor,
|
||||
TaskIndex, NumTasks);
|
||||
|
||||
ParallelCommandListSet->AddParallelCommandList(CmdList, AnyThreadCompletionEvent, NumDraws);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
QUICK_SCOPE_CYCLE_COUNTER(STAT_MeshPassDrawImmediate);
|
||||
|
||||
WaitForMeshPassSetupTask(IsInActualRenderingThread() ? EWaitThread::Render : EWaitThread::Task);
|
||||
|
||||
if (TaskContext.bUseGPUScene)
|
||||
{
|
||||
if (TaskContext.MeshDrawCommands.Num() > 0)
|
||||
{
|
||||
TaskContext.InstanceCullingContext.SubmitDrawCommands(
|
||||
TaskContext.MeshDrawCommands,
|
||||
TaskContext.MinimalPipelineStatePassSet,
|
||||
OverrideArgs,
|
||||
0,
|
||||
TaskContext.MeshDrawCommands.Num(),
|
||||
TaskContext.InstanceFactor,
|
||||
RHICmdList);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
SubmitMeshDrawCommandsRange(TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, nullptr, 0, 0, TaskContext.bDynamicInstancing, 0, TaskContext.MeshDrawCommands.Num(), TaskContext.InstanceFactor, RHICmdList);
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 普通Pass渲染
|
||||
```c++
|
||||
// 代码为UE5旧版本代码
|
||||
// Engine\Source\Runtime\RHI\Public\RHIResources.h
|
||||
|
||||
// 渲染通道信息.
|
||||
struct FRHIRenderPassInfo
|
||||
{
|
||||
// 渲染纹理信息.
|
||||
struct FColorEntry
|
||||
{
|
||||
FRHITexture* RenderTarget;
|
||||
FRHITexture* ResolveTarget;
|
||||
int32 ArraySlice;
|
||||
uint8 MipIndex;
|
||||
ERenderTargetActions Action;
|
||||
};
|
||||
FColorEntry ColorRenderTargets[MaxSimultaneousRenderTargets];
|
||||
|
||||
// 深度模板信息.
|
||||
struct FDepthStencilEntry
|
||||
{
|
||||
FRHITexture* DepthStencilTarget;
|
||||
FRHITexture* ResolveTarget;
|
||||
EDepthStencilTargetActions Action;
|
||||
FExclusiveDepthStencil ExclusiveDepthStencil;
|
||||
};
|
||||
FDepthStencilEntry DepthStencilRenderTarget;
|
||||
|
||||
// 解析参数.
|
||||
FResolveParams ResolveParameters;
|
||||
|
||||
// 部分RHI可以使用纹理来控制不同区域的采样和/或阴影分辨率
|
||||
FTextureRHIRef FoveationTexture = nullptr;
|
||||
|
||||
// 部分RHI需要一个提示,遮挡查询将在这个渲染通道中使用
|
||||
uint32 NumOcclusionQueries = 0;
|
||||
bool bOcclusionQueries = false;
|
||||
|
||||
// 部分RHI需要知道,在为部分资源转换生成mip映射的情况下,这个渲染通道是否将读取和写入相同的纹理.
|
||||
bool bGeneratingMips = false;
|
||||
|
||||
// 如果这个renderpass应该是多视图,则需要多少视图.
|
||||
uint8 MultiViewCount = 0;
|
||||
|
||||
// 部分RHI的提示,渲染通道将有特定的子通道.
|
||||
ESubpassHint SubpassHint = ESubpassHint::None;
|
||||
|
||||
// 是否太多UAV.
|
||||
bool bTooManyUAVs = false;
|
||||
bool bIsMSAA = false;
|
||||
|
||||
// 不同的构造函数.
|
||||
|
||||
// Color, no depth, optional resolve, optional mip, optional array slice
|
||||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveRT = nullptr, uint32 InMipIndex = 0, int32 InArraySlice = -1);
|
||||
// Color MRTs, no depth
|
||||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction);
|
||||
// Color MRTs, no depth
|
||||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveTargets[]);
|
||||
// Color MRTs and depth
|
||||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Color MRTs and depth
|
||||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveRTs[], FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Depth, no color
|
||||
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Depth, no color, occlusion queries
|
||||
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, uint32 InNumOcclusionQueries, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Color and depth
|
||||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Color and depth with resolve
|
||||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
|
||||
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
// Color and depth with resolve and optional sample density
|
||||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
|
||||
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FRHITexture* InFoveationTexture, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||||
|
||||
enum ENoRenderTargets
|
||||
{
|
||||
NoRenderTargets,
|
||||
};
|
||||
explicit FRHIRenderPassInfo(ENoRenderTargets Dummy);
|
||||
explicit FRHIRenderPassInfo();
|
||||
|
||||
inline int32 GetNumColorRenderTargets() const;
|
||||
RHI_API void Validate() const;
|
||||
RHI_API void ConvertToRenderTargetsInfo(FRHISetRenderTargetsInfo& OutRTInfo) const;
|
||||
|
||||
(......)
|
||||
};
|
||||
|
||||
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
|
||||
|
||||
class RHI_API FRHICommandList : public FRHIComputeCommandList
|
||||
{
|
||||
public:
|
||||
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
|
||||
{
|
||||
if (InInfo.bTooManyUAVs)
|
||||
{
|
||||
UE_LOG(LogRHI, Warning, TEXT("RenderPass %s has too many UAVs"));
|
||||
}
|
||||
InInfo.Validate();
|
||||
|
||||
// 直接调用RHI的接口.
|
||||
if (Bypass())
|
||||
{
|
||||
GetContext().RHIBeginRenderPass(InInfo, Name);
|
||||
}
|
||||
// 分配RHI命令.
|
||||
else
|
||||
{
|
||||
TCHAR* NameCopy = AllocString(Name);
|
||||
ALLOC_COMMAND(FRHICommandBeginRenderPass)(InInfo, NameCopy);
|
||||
}
|
||||
// 设置在RenderPass内标记.
|
||||
Data.bInsideRenderPass = true;
|
||||
|
||||
// 缓存活动的RT.
|
||||
CacheActiveRenderTargets(InInfo);
|
||||
// 重置子Pass.
|
||||
ResetSubpass(InInfo.SubpassHint);
|
||||
Data.bInsideRenderPass = true;
|
||||
}
|
||||
|
||||
void EndRenderPass()
|
||||
{
|
||||
// 调用或分配RHI接口.
|
||||
if (Bypass())
|
||||
{
|
||||
GetContext().RHIEndRenderPass();
|
||||
}
|
||||
else
|
||||
{
|
||||
ALLOC_COMMAND(FRHICommandEndRenderPass)();
|
||||
}
|
||||
// 重置在RenderPass内标记.
|
||||
Data.bInsideRenderPass = false;
|
||||
// 重置子Pass标记为None.
|
||||
ResetSubpass(ESubpassHint::None);
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
它们的使用案例如下:
|
||||
主要是`FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore)`与`RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"))`
|
||||
```c++
|
||||
bool FRHIDrawTests::Test_MultiDrawIndirect(FRHICommandListImmediate& RHICmdList)
|
||||
{
|
||||
if (!GRHIGlobals.SupportsMultiDrawIndirect)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
// Probably could/should automatically enable in the outer scope when running RHI Unit Tests
|
||||
// RenderCaptureInterface::FScopedCapture RenderCapture(true /*bEnable*/, &RHICmdList, TEXT("Test_MultiDrawIndirect"));
|
||||
|
||||
static constexpr uint32 MaxInstances = 8;
|
||||
|
||||
// D3D12 does not have a way to get the base instance ID (SV_InstanceID always starts from 0), so we must emulate it...
|
||||
const uint32 InstanceIDs[MaxInstances] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
||||
FBufferRHIRef InstanceIDBuffer = CreateBufferWithData(EBufferUsageFlags::VertexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_InstanceID"), MakeArrayView(InstanceIDs));
|
||||
|
||||
FVertexDeclarationElementList VertexDeclarationElements;
|
||||
VertexDeclarationElements.Add(FVertexElement(0, 0, VET_UInt, 0, 4, true /*per instance frequency*/));
|
||||
FVertexDeclarationRHIRef VertexDeclarationRHI = PipelineStateCache::GetOrCreateVertexDeclaration(VertexDeclarationElements);
|
||||
|
||||
const uint16 Indices[3] = { 0, 1, 2 };
|
||||
FBufferRHIRef IndexBuffer = CreateBufferWithData(EBufferUsageFlags::IndexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_IndexBuffer"), MakeArrayView(Indices));
|
||||
|
||||
static constexpr uint32 OutputBufferStride = sizeof(uint32);
|
||||
static constexpr uint32 OutputBufferSize = OutputBufferStride * MaxInstances;
|
||||
FRHIResourceCreateInfo OutputBufferCreateInfo(TEXT("Test_MultiDrawIndirect_OutputBuffer"));
|
||||
FBufferRHIRef OutputBuffer = RHICmdList.CreateBuffer(OutputBufferSize, EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::SourceCopy, OutputBufferStride, ERHIAccess::UAVCompute, OutputBufferCreateInfo);
|
||||
|
||||
const uint32 CountValues[4] = { 1, 1, 16, 0 };
|
||||
FBufferRHIRef CountBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess, ERHIAccess::IndirectArgs, TEXT("Test_MultiDrawIndirect_Count"), MakeArrayView(CountValues));
|
||||
|
||||
const FRHIDrawIndexedIndirectParameters DrawArgs[] =
|
||||
{
|
||||
// IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation
|
||||
{3, 1, 0, 0, 0}, // fill slot 0
|
||||
// gap in slot 1
|
||||
{3, 2, 0, 0, 2}, // fill slots 2, 3 using 1 sub-draw
|
||||
// gap in slot 4
|
||||
{3, 1, 0, 0, 5}, // fill slots 5, 6 using 2 sub-draws
|
||||
{3, 1, 0, 0, 6},
|
||||
{3, 1, 0, 0, 7}, // this draw is expected to never execute
|
||||
};
|
||||
|
||||
const uint32 ExpectedDrawnInstances[MaxInstances] = { 1, 0, 1, 1, 0, 1, 1, 0 };
|
||||
|
||||
FBufferRHIRef DrawArgBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::VertexBuffer, ERHIAccess::IndirectArgs,
|
||||
TEXT("Test_MultiDrawIndirect_DrawArgs"), MakeArrayView(DrawArgs));
|
||||
|
||||
FUnorderedAccessViewRHIRef OutputBufferUAV = RHICmdList.CreateUnorderedAccessView(OutputBuffer,
|
||||
FRHIViewDesc::CreateBufferUAV()
|
||||
.SetType(FRHIViewDesc::EBufferType::Typed)
|
||||
.SetFormat(PF_R32_UINT));
|
||||
|
||||
RHICmdList.ClearUAVUint(OutputBufferUAV, FUintVector4(0));
|
||||
|
||||
const FIntPoint RenderTargetSize(4, 4);
|
||||
FRHITextureDesc RenderTargetTextureDesc(ETextureDimension::Texture2D, ETextureCreateFlags::RenderTargetable, PF_B8G8R8A8, FClearValueBinding(), RenderTargetSize, 1, 1, 1, 1, 0);
|
||||
FRHITextureCreateDesc RenderTargetCreateDesc(RenderTargetTextureDesc, ERHIAccess::RTV, TEXT("Test_MultiDrawIndirect_RenderTarget"));
|
||||
FTextureRHIRef RenderTarget = RHICreateTexture(RenderTargetCreateDesc);
|
||||
|
||||
TShaderMapRef<FTestDrawInstancedVS> VertexShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
|
||||
TShaderMapRef<FTestDrawInstancedPS> PixelShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
|
||||
|
||||
FGraphicsPipelineStateInitializer GraphicsPSOInit;
|
||||
|
||||
GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
|
||||
GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = VertexDeclarationRHI;
|
||||
GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();
|
||||
GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState<false, CF_Always>::GetRHI();
|
||||
GraphicsPSOInit.BlendState = TStaticBlendState<>::GetRHI();
|
||||
GraphicsPSOInit.RasterizerState = TStaticRasterizerState<>::GetRHI();
|
||||
GraphicsPSOInit.PrimitiveType = EPrimitiveType::PT_TriangleList;
|
||||
|
||||
FRHITexture* ColorRTs[1] = { RenderTarget.GetReference() };
|
||||
FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore);
|
||||
|
||||
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVCompute, ERHIAccess::UAVGraphics, EResourceTransitionFlags::None));
|
||||
RHICmdList.BeginUAVOverlap(); // Output UAV can be written without syncs between draws (each draw is expected to write into different slots)
|
||||
|
||||
RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"));
|
||||
RHICmdList.SetViewport(0, 0, 0, float(RenderTargetSize.X), float(RenderTargetSize.Y), 1);
|
||||
|
||||
RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
|
||||
SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit, 0);
|
||||
|
||||
check(InstanceIDBuffer->GetStride() == 4);
|
||||
RHICmdList.SetStreamSource(0, InstanceIDBuffer, 0);
|
||||
|
||||
FRHIBatchedShaderParameters ShaderParameters;
|
||||
ShaderParameters.SetUAVParameter(PixelShader->OutDrawnInstances.GetBaseIndex(), OutputBufferUAV);
|
||||
RHICmdList.SetBatchedShaderParameters(PixelShader.GetPixelShader(), ShaderParameters);
|
||||
|
||||
const uint32 DrawArgsStride = sizeof(DrawArgs[0]);
|
||||
const uint32 CountStride = sizeof(CountValues[0]);
|
||||
|
||||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||||
DrawArgBuffer, DrawArgsStride*0, // 1 sub-draw with instance index 0
|
||||
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
|
||||
5 // expect to draw only 1 instance due to GPU-side upper bound
|
||||
);
|
||||
|
||||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||||
DrawArgBuffer, DrawArgsStride*1, // 1 sub-draw with 2 instances at base index 2
|
||||
CountBuffer, CountStride*1, // count buffer contains 1 in this slot
|
||||
4 // expect to draw only 1 instance due to GPU-side upper bound
|
||||
);
|
||||
|
||||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||||
DrawArgBuffer, DrawArgsStride*2, // 2 sub-draws with 1 instance each starting at base index 5
|
||||
CountBuffer, CountStride*2, // count buffer contains 16 in this slot
|
||||
2 // expect to draw only 2 instances due to CPU-side upper bound
|
||||
);
|
||||
|
||||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||||
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
|
||||
CountBuffer, CountStride*3, // count buffer contains 0 in this slot
|
||||
1 // expect to skip the draw due to GPU-side count of 0
|
||||
);
|
||||
|
||||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||||
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
|
||||
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
|
||||
0 // expect to skip the draw due to CPU-side count of 0
|
||||
);
|
||||
|
||||
RHICmdList.EndRenderPass();
|
||||
|
||||
RHICmdList.EndUAVOverlap();
|
||||
|
||||
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVGraphics, ERHIAccess::CopySrc, EResourceTransitionFlags::None));
|
||||
|
||||
TConstArrayView<uint8> ExpectedOutputView = MakeArrayView(reinterpret_cast<const uint8*>(ExpectedDrawnInstances), sizeof(ExpectedDrawnInstances));
|
||||
bool bSucceeded = FRHIBufferTests::VerifyBufferContents(TEXT("Test_MultiDrawIndirect"), RHICmdList, OutputBuffer, ExpectedOutputView);
|
||||
|
||||
return bSucceeded;
|
||||
}
|
||||
```
|
||||
|
||||
## Subpass
|
||||
先说一下Subpass的由来、作用和特点。
|
||||
|
||||
在传统的多Pass渲染中,每个Pass结束时通常会渲染出一组渲染纹理,部分成为着色器参数提供给下一个Pass采样读取。这种纹理采样方式不受任何限制,可以读取任意的领域像素,使用任意的纹理过滤方式。这种方式虽然使用灵活,但在TBR(Tile-Based Renderer)硬件架构的设备中会有较大的消耗:渲染纹理的Pass通常会将渲染结果存储在On-chip的Tile Memory中,待Pass结束后会写回GPU显存(VRAM)中,写回GPU显存是个耗时耗耗电的操作。
|
||||
|
||||

|
||||
|
||||
_传统多Pass之间的内存存取模型,多次发生于On-Chip和全局存储器之间。_
|
||||
|
||||
如果出现一种特殊的纹理使用情况:上一个Pass渲染处理的纹理,立即被下一个Pass使用,并且下一个Pass只采样像素位置自身的数据,而不需要采样邻域像素的位置。这种情况就符合了Subpass的使用情景。使用Subpass渲染的纹理结果只会存储在Tile Memory中,在Subpass结束后不会写回VRAM,而直接提供Tile Memory的数据给下一个Subpass采样读取。这样就避免了传统Pass结束写回GPU显存以及下一个Pass又从GPU显存读数据的耗时耗电操作,从而提升了性能。
|
||||
|
||||

|
||||
|
||||
_Subpass之间的内存存取模型,都发生在On-Chip内。_
|
||||
|
||||
Subpass的相关代码主要集中在移动端中。UE涉及Subpass的接口和类型如下:
|
||||
```c++
|
||||
// 提供给RHI的Subpass标记.
|
||||
enum class ESubpassHint : uint8
|
||||
{
|
||||
None, // 传统渲染(非Subpass)
|
||||
DepthReadSubpass, // 深度读取Subpass.
|
||||
DeferredShadingSubpass, // 移动端延迟着色Subpass.
|
||||
};
|
||||
|
||||
|
||||
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
|
||||
|
||||
class RHI_API FRHICommandListBase : public FNoncopyable
|
||||
{
|
||||
(......)
|
||||
|
||||
protected:
|
||||
// PSO上下文.
|
||||
struct FPSOContext
|
||||
{
|
||||
uint32 CachedNumSimultanousRenderTargets = 0;
|
||||
TStaticArray<FRHIRenderTargetView, MaxSimultaneousRenderTargets> CachedRenderTargets;
|
||||
FRHIDepthRenderTargetView CachedDepthStencilTarget;
|
||||
|
||||
// Subpass提示标记.
|
||||
ESubpassHint SubpassHint = ESubpassHint::None;
|
||||
uint8 SubpassIndex = 0;
|
||||
uint8 MultiViewCount = 0;
|
||||
bool HasFragmentDensityAttachment = false;
|
||||
} PSOContext;
|
||||
};
|
||||
|
||||
class RHI_API FRHICommandList : public FRHIComputeCommandList
|
||||
{
|
||||
public:
|
||||
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
|
||||
{
|
||||
(......)
|
||||
|
||||
CacheActiveRenderTargets(InInfo);
|
||||
// 设置Subpass数据.
|
||||
ResetSubpass(InInfo.SubpassHint);
|
||||
Data.bInsideRenderPass = true;
|
||||
}
|
||||
|
||||
void EndRenderPass()
|
||||
{
|
||||
(......)
|
||||
|
||||
// 重置Subpass标记为None.
|
||||
ResetSubpass(ESubpassHint::None);
|
||||
}
|
||||
|
||||
// 下一个Subpass.
|
||||
void NextSubpass()
|
||||
{
|
||||
// 分配或调用RHI接口.
|
||||
if (Bypass())
|
||||
{
|
||||
GetContext().RHINextSubpass();
|
||||
}
|
||||
else
|
||||
{
|
||||
ALLOC_COMMAND(FRHICommandNextSubpass)();
|
||||
}
|
||||
|
||||
// 增加Subpass计数.
|
||||
IncrementSubpass();
|
||||
}
|
||||
|
||||
// 增加subpass计数.
|
||||
void IncrementSubpass()
|
||||
{
|
||||
PSOContext.SubpassIndex++;
|
||||
}
|
||||
|
||||
// 重置Subpass数据.
|
||||
void ResetSubpass(ESubpassHint SubpassHint)
|
||||
{
|
||||
PSOContext.SubpassHint = SubpassHint;
|
||||
PSOContext.SubpassIndex = 0;
|
||||
}
|
||||
};
|
||||
```
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
title: 剖析虚幻渲染体系(11)- RDG
|
||||
date: 2024-02-04 21:42:54
|
||||
excerpt:
|
||||
tags:
|
||||
rating: ⭐
|
||||
---
|
||||
# 前言
|
||||
https://www.cnblogs.com/timlly/p/15217090.html
|
8
03-UnrealEngine/性能优化/c++内存泄漏分析工具.md
Normal file
8
03-UnrealEngine/性能优化/c++内存泄漏分析工具.md
Normal file
@ -0,0 +1,8 @@
|
||||
---
|
||||
title: c++内存泄漏分析工具
|
||||
date: 2024-02-04 21:15:26
|
||||
excerpt:
|
||||
tags:
|
||||
rating: ⭐
|
||||
---
|
||||
https://github.com/dpull/tracing_malloc?tab=readme-ov-file
|
Loading…
x
Reference in New Issue
Block a user