
Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0856 $5.00

Coherent Stylized Silhouettes

Robert D. Kalnins Philip L. Davidson Lee Markosian Adam Finkelstein

Princeton University

Abstract

We describe a way to render stylized silhouettes of animated 3D
models with temporal coherence. Coherence is one of the central
challenges for non-photorealistic rendering. It is especially difficult
for silhouettes, because they may not have obvious correspondences
between frames. We demonstrate various coherence effects for
stylized silhouettes with a robust working system. Our method runs
in real-time for models of moderate complexity, making it suitable
for both interactive applications and offline animation.

Keywords: Silhouettes, animation, non-photorealistic rendering.

1 Introduction

Silhouettes play a critical role in our visual interpretation of 3D
shape. Artists and designers therefore often emphasize silhouettes,
either by drawing them explicitly or by contrast enhancement
across silhouette boundaries. Indeed, the most minimal hand-drawn
image of a 3D scene will often be composed largely of marks
representing silhouettes and sharp features.

Researchers have developed a number of algorithms to find and
render silhouettes from 3D models. One branch of this research
addresses stylized silhouettes, which are drawn with strokes that
wiggle, vary in width and texture, or resemble in other ways strokes
drawn by hand with natural media. Stylization is characteristic of
non-photorealistic rendering (NPR) applications, for which many
effective general arguments have already been made (e.g., [Durand
2002; Gooch and Gooch 2001; Strothotte and Schlechtweg 2002]).
Stylized silhouettes can, for example, suggest surface texture,
give an organic feeling to an overly-mechanical shape, or simply
annotate features of a model such as the hidden silhouettes denoted
by dashed lines in Figure 1b.

A key challenge for non-photorealistic rendering is to provide
frame-to-frame coherence, so that strokes adapt smoothly over time
to changes in the animated scene (Figure 1d). Temporal coherence
is especially challenging for silhouettes because they may not
have obvious inter-frame correspondence as they evolve over time.
Furthermore, the goal of providing coherence on the 3D shape
conflicts in general with another goal for stylized strokes: to look
hand-drawn, stylization should map onto strokes parameterized by
2D arc-length. For example, it wouldn’t do if the brush wiggles
were all squished into one end of the stroke. A final challenge is
to make these methods work at interactive rates, enabling real-time
applications such as interactive illustrations and games.

(a) (b)

(c) (d)

Figure 1: Stylized silhouettes can (a) suggest geometric detail,
(b) reveal hidden features, and (c) impart a rich hand-drawn look.
In panel (d), strokes from (c) adapt coherently to the new view.

In this paper we explain how to interactively render stylized
silhouettes with robust frame-to-frame coherence. We address the
coherence challenge by describing a new algorithm for propagating
the parameterization from strokes in one frame to strokes in the
next. The method allows a designer to balance between the goals
of coherence on the 3D shape and 2D arc-length parameterization.

2 Related Work

A number of researchers have developed strategies for explicitly
drawing stylized silhouettes from a 3D model [Zeleznik et al. 1996;
Masuch et al. 1997; Markosian et al. 1997; Bremer and Hughes
1998; Gooch et al. 1999; Hertzmann and Zorin 2000; Lake et al.
2000; Northrup and Markosian 2000; Isenberg et al. 2002]. Other
methods leverage graphics hardware to render silhouettes without
handling them explicitly [Gooch et al. 1999; Raskar 2001], but
these admit only minimal stylistic control.

Little attention has been given to the temporal coherence prob-
lem for stylized silhouettes. Masuch et al. [1998] describe a so-
lution to this problem for the setting when natural silhouette arc-
length parameterization remains consistent, but this applies only
under simple conditions (e.g. rotating about a cylinder).

A more general approach to this problem is given by Bour-
dev [1998]. He proposes to parameterize silhouettes based on
parameter samples from nearby strokes in the previous frame.
A simple version of Bourdev’s scheme is implemented by
Kalnins et al. [2002]. Inspired by Bourdev’s sampling method, we
present a new approach that provides significant improvements in
robustness and offers control over the tradeoff between arc-length
parameterization in 2D and coherence on the 3D shape.

856

(a) mesh in frame fi (b) silhouette loops (c) silhouette paths (d) brush paths (e) strokes in fi

(f) samples on (d) (g) new camera for fi+1 (h) propagation (i) new brush paths (j) new strokes in fi+1

Figure 2: Overview of process. Upper row: stylization of silhouettes in frame fi. Lower row: propagation to subsequent frame fi+1.

3 Overview

This section describes some of the design goals for rendering
stylized silhouettes with coherence and provides an overview of the
key steps in our system. Our implementation works on triangle
meshes, but the algorithms introduced here should work for any
surface representation on which silhouettes can be found.

We assume that each mesh is assigned a stylization based on
application-specific aesthetic concerns. The stylization is defined
either as a set of brush marks or as a texture image. The mesh
may be separated into patches, each of which receives a single
stylization that is applied uniformly to all silhouettes. Optionally,
invisible silhouettes and creases (or other hand-tagged features)
may each receive their own stylization to augment the rendering.

Before delving into our design goals, we define a few terms
used throughout the paper. First, silhouette loops separate front-
and back-facing portions of the mesh; they consist of polylines
that either form complete loops on the mesh or begin and end on
mesh creases or boundaries (Figure 2b). Second, silhouette paths
are visible or invisible portions of silhouette loops, depending on
which we are interested in rendering (Figure 2c). Finally, strokes
are the rendering primitives used in our system (see Section 3.2).

3.1 Design Objectives

The primary goal of our system is to draw stylized silhouettes using
temporally coherent strokes. Strokes have two properties that affect
coherence: the path in the image plane over which the stroke is
applied, and the parameterization that defines how stylization (e.g.,
wiggles or texture) is mapped onto that path. Typically, silhouette
paths in the image plane enjoy a natural coherence. Therefore,
the key to achieving our goal is to provide coherence for the
parameterization of silhouettes. There are two questions we must
address: first, what is the unit of stylization to be parameterized?
Second, how do we assign coherent parameterization to those units?
This paper offers answers to these questions that make it possible
to render stylized silhouettes with robust coherence. These answers
are the major contributions of our work.

There is a seemingly-obvious answer to the first question: one
can parameterize individual silhouette paths. Both Bourdev [1998]
and Masuch et al. [1998] investigated this approach independently.
This strategy works well for some sequences of frames. However,
coherence will be broken whenever two silhouette paths in one
frame merge into a single path in the next frame. There will
be a visual “pop” if single parameterization is assigned, unless
by chance the two paths have matching parameterization where
they abut. To avoid this, Masuch et al. caused the two abutting
paths to match in limited cases by enforcing coherence along the
underlying silhouette loop. While this strategy prevents some

popping, in general it exacerbates a problem arising whenever a
single parameterization is maintained for long silhouette paths.
Changes in foreshortening on one area of the model can influence
other areas far away, leading to “swimming” artifacts wherein the
stylization appears to slide along the visible silhouette.

To address the popping problem, we do not require a single
parameterization per silhouette path. Instead, we enforce coherence
for separate portions of the silhouette path that we call brush paths
(Figure 2d). Intuitively, a brush path may be thought of as the path
of a single stroke, though in practice many strokes may be applied
in concert to a single brush path (e.g. for dashed lines). Section 4
provides a detailed description of how silhouette paths are divided
into brush paths. Using brush paths also ameliorates the swimming
problem because stylization is more localized.

Having identified brush paths as the unit of coherence, we now
address the second question above: how do we parameterize them?
Section 1 mentions two competing goals: stroke coherence on the
3D shape versus uniform 2D arc-length parameterization. In any
particular scene the semantics of the stylization governs the relative
priority of these two goals. Thus, we would like to provide the
designer with controls for balancing between them. Bourdev [1998]
also identifies this objective and offers a technique based on
weighted averages to address it. However, his approach suffers
from visual artifacts we will describe in Section 4.2. Section 5
provides a detailed discussion of our strategy for balancing between
these goals in a robust, controllable manner.

3.2 The System

To find the silhouettes, determine visibility, and render strokes we
largely follow procedures outlined by Kalnins et al. [2002]. We
now briefly recap the key steps. (See Figures 2a-e.)

Extraction. Any of several methods can be used to extract
silhouettes from 3D models with the goal of drawing strokes
along them [Isenberg et al. 2002; Northrup and Markosian 2000;
Hertzmann and Zorin 2000]. Isenberg et al. [2003] provide an
excellent overview of the tradeoffs involved in choosing among the
various silhouette extraction techniques.

Visibility. We determine visibility of silhouettes using an ID
image, as described by Northrup and Markosian [2000]. The same
ID image plays a role in the propagation of parameter samples from
one frame to the next (described in Section 4). Regardless of the
chosen visibility algorithm, the result of this phase should be a
set of 3D silhouette paths, processed for visibility and resampled
to screen-space resolution. The in-frustum occluded paths may
optionally be drawn in some special style as in Figure 1b. However,
this involves additional framebuffer techniques for constructing the
ID image [Rossignac and van Emmerik 1992].

857

Rendering. A brush path may be rendered with multiple strokes,
for example to produce a dashed line or to depict the spikes
of a cactus (Figure 1). We use either of two mechanisms to
apply strokes over brush paths. One method constructs a single
stroke as a triangle strip following each brush path, and applies
to it a (periodic) texture map suggesting one or more marks. In
this case, the texture coordinate along the strip is given by the
parameterization of the brush path. This strategy is useful for dotted
or dashed lines and large paint brush strokes. The second method is
to programmatically construct one or more strokes over the brush
path, using triangle strips with geometric offset lists as described
by Kalnins et al. [2002]. This strategy permits finer control over
qualities such as tapering of individual strokes. In either case, the
stroke pattern is repeated if needed to cover long brush paths.

4 Brush Paths

During rendering, stylization is mapped onto the brush path via a
parameter t. To achieve temporal coherence, we propagate samples
of t from one frame to the next. This section describes how we
generate new brush paths from the samples. Section 5 describes
how these new brush paths are parameterized from the samples. An
overview of this process is shown in the lower row of Figure 2.

4.1 Sample Propagation

At each frame fi, we take a set of evenly spaced samples from each
brush path. Each sample contains a triplet: its location in 3D on
the mesh, its brush path ID, and the parameter t that we wish to
propagate. We record the 3D position as a barycentric location on
a mesh triangle in order to track the shape during animation. In
subsequent frame fi+1, we seek to register the samples from fi

against the silhouette paths of fi+1 to propagate parameterization.
Our goal is that a sample should arrive at a silhouette path that

is nearby in screen space and nearby on the mesh. Of course,
from fi to fi+1 there may be an arbitrary camera motion or mesh
animation. However for ordinary coherent animation these motions
will be moderate. As illustrated in Figure 2g, our first step is to
project each sample from its 3D location to the image plane given
the camera of fi+1. Call its projection x.

To find a brush path near the sample in fi+1, we search in
the ID image near x. The ID image (Figure 3) is an item buffer
that encodes individual IDs of silhouette loops and faces of the
mesh. We check a one-pixel-radius neighborhood of x and step
repeatedly by one pixel along the screen-space projection of the
original surface normal until we find the ID of a silhouette path or
else exceed a distance threshold. We search along the projected

Figure 3: Sample propagation shown in successive enlargements
of the ID image for a torus. Silhouette path IDs are green shades.
Mesh faces are (striped) shades of orange. Search paths are marked
in white. Blue pixels mark the successful termination of searches.

normal because this direction tends to point toward the silhouette.
If more than one silhouette path is found, we choose the path
intersection closest to the original location in 3D. We observe
that because silhouettes move coherently across the mesh, most
searches succeed immediately in the neighborhood of x, or else
within just a few pixels. (This is always true for creases, because
they remain fixed on the model.) A threshold of 6 pixels was found
sufficient at 640x480 to propagate parameter samples under most
camera changes. In practice, when the camera changes are extreme
enough as to thwart propagation, we find that any coherence, or lack
thereof, is imperceptible anyway. Finally, when a silhouette path is
found, we record a vote (s, t) – the association of the parameter
sample t with the arc-length parameter s on the silhouette path
found by the search. The next two sections describe how these
votes are used to generate and then parameterize brush paths.

4.2 Brush Path Generation

We generate one or more brush paths along each silhouette path P
by taking into account the votes it receives. Votes registered on P
are first sorted into vote groups {(si, ti)} based on their brush
path ID. The votes from a given brush path typically reach the
same silhouette path in fi+1 en masse. Nevertheless, it frequently
happens that some votes end up on silhouette paths that are also
populated by votes from other brush paths. It can also happen that
votes arrive out of order. To address such problems we process the
vote groups as follows. We sort each group in order of increasing si.
Wherever a large gap is found between si and si+1 or ti and ti+1
(relative to the mean) we split the group. Next we discard any
groups that are (1) smaller than three votes, (2) ordered in reverse,
(3) very sparse (i.e., the gaps in ti are larger than anticipated), or
(4) covering less than 5% of silhouette path length. When fewer
than two vote groups survive on P , we assign a single brush path.
For two or more surviving vote groups, we consider several policies
for covering P with brush paths (Figure 4):

Mixed. We generate a single brush path covering P and
parameterize it by mixing information from all the votes. This is
the policy described by Bourdev [1998]. One problem with this
policy is that it mixes data from different sources in a way that is not
meaningful (effectively throwing away information). In addition, it
suffers from the same drawback as the next policy.

Majority. This policy assigns a single brush path to P by
choosing the vote group with the largest number of samples and
ignoring the others. Unfortunately, this often yields poor temporal
coherence. For example, in Figure 4b, all of P is parameterized
consistently with the “red” vote group. The parameterization in
the region of the “blue” votes is extrapolated from the red ones,
resulting in a “pop” where the red parameterization replaces blue.
(See the accompanying video.)

(a) mixed (b) majority (c) 1-to-1 (d) trimmed

Figure 4: Four policies for generating brush paths on a silhouette
path given the same two vote groups. See Section 4.2.

858

1-to-1. This policy promotes temporal coherence by generating
one brush path for each vote group. If any part of P remains
uncovered, the nearest brush paths are extended to cover the gap.
While coherent, this approach can lead to cumulative fragmentation
over time, with a profusion of short brush paths covering P .
Furthermore, the brush paths can overlap arbitrarily, leading to an
accumulation of visual “clutter.”

Trimmed 1-to-1. We favor this policy which eliminates the
overlaps of 1-to-1. Each vote group is assigned a confidence
based on its size. We assign brush paths as in 1-to-1 coverage,
then trim away overlapping portions, leaving only those of highest
confidence. While avoiding clutter, this approach still suffers from
cumulative fragmentation over time. However, we can counteract
this effect by merging abutting brush paths via a “healing” process
as described at the end of the next section.

5 Brush Path Parameterization

Once the brush paths are generated it remains only to parameterize
them. In the absence of any votes, we parameterize brush paths
by a scaled arc-length (following Kalnins et al. [2002]). The scale
factor ρ is a ratio of the model’s initial size (recorded when the
stylization is first applied) to its current size. We measure size as
the screen-space diameter of the model’s bounding sphere. The
basic parameterization is thus T (s) = ρs, where s is the arc-
length parameter along the brush path. This scaling results in a
more natural effect when the camera is zoomed in or out.

We now describe two schemes for parameterizing a brush path
when votes are present. The schemes optimize for the competing
objectives of uniform 2D arc-length parameterization vs. coherence
on the 3D shape. Finally, we present a combined scheme that can
strike a desired balance between the two extremes.

Phase fitting (Figure 5a): This method computes a uniform 2D
arc-length parameterization Tφ(s) = ρs + φ by solving for the
phase φ that best fits the votes (under least-squares). This works
well for panning or zooming, but under changes in foreshortening it
leads to a “swimming” effect wherein strokes appear to slide along
the silhouette. This is undesirable for stroke styles meant to suggest
3D shape. Consider the cactus shown in Figure 6a. One expects the
thorns to remain relatively fixed on the model, yet with phase fitting
the spines flow around the top of the right arm.

Interpolation (Figure 5b): This method promotes coherence
on the 3D shape by simply interpolating the votes: Tint(s) is
taken to be the polyline connecting the samples {(si, ti)}). Under
this policy, the spines of the cactus in Figure 6c appear fixed
on the model, as expected. However, this effect is not desirable
for styles that are more purely 2D (e.g. dotted lines). As shown
in Figure 6f, this scheme leads to distortion in the dot spacing,
whereas phase fitting maintains the expected even 2D spacing.
Furthermore, interpolation can lead to progressive distortion over
time (e.g. parameterization “piling up” in a region of brush path).

t

s

T (s)φ

(s ,t)(s ,t)
iiii

φ
(s ,t)(s ,t)

iiii

t

s

T (s)
int

t

s

T (s)
opt

(s ,t)(s ,t)
iiii

τ j

(a) phase fitting (b) interpolation (c) optimization

Figure 5: Three schemes for assigning parameterization T (s) to a
brush path given vote group {(si, ti)} (red points). See Section 5.

(a) initial (b) phase fitting (c) interpolation

(d) initial (e) phase fitting (f) interpolation

Figure 6: Behavior of strokes should depend on the semantics of
the stylization. (See Section 5 and the accompanying video.)

Optimization (Figure 5c): This method balances the competing
goals of coherence on the 3D shape and uniform 2D arc-length
parameterization. We separate the second goal into two parts:
globally matching arc-length scaled by ρ, and locally minimizing
deviation from uniform arc-length. We then compute an optimal
parameterization Topt(s) by minimizing a total energy defined as a
weighted sum of energies corresponding to the different goals:

E = Evotes + ωρEρ + ωbEbend + ωhEheal. (1)

The first three terms of this energy correspond, respectively, to how
well the parameterization (1) fits the votes, (2) matches scaled arc-
length, and (3) avoids local distortion. The fourth term relates to
the goal of “healing,” described below. The non-negative weights
ωρ, ωb, and ωh let a designer balance between these goals.

We find that taking t to be a piecewise-linear function of s is
sufficient to fit the votes well without producing visual artifacts
at tangent discontinuities. Thus, we take Topt(s) to be a polyline
interpolating a vertex sequence {σj , τj}, where the m knots σj are
evenly-spaced arc-length parameters over the brush path.1 Given
the set of incoming votes and chosen weights, the optimization
solves a system of equations to find τj’s minimizing E. Because
the system is linear, it can be solved efficiently (which is important
since there can be many brush paths each frame).

The first term of the energy equation (1) measures the least-
squares difference between Topt and the votes:

Evotes =
1
n

nX

i=1

[Topt(si) − ti]2 (2)

Each term Topt(si) depends only on the segment j of the polyline
in which si falls. It is linear in the two free variables τj and τj+1.

1In our implementation, typical knot spacing is about 18 pixels in the ID
image, compared to a spacing of 6 pixels for the parameter samples.

859

(a) (b) (c)

Figure 7: (a) Simple octopus model in a sketchy style. (b)“Venus” rendered with animated silhouettes. (c) Visualization of a mechanical part.

The next energy term is most easily expressed if we “normalize”
the τj’s by taking τ̂j ≡ τj − ρσj . The energy measures how the
τj’s deviate from ρ-scaled arc-length, or simply how the normalized
τ̂j’s deviate from their average τ̂ave:

Eρ =
1
m

mX

j=1

[τ̂ave − τ̂j]2 (3)

The third term measures a “thin plate” energy that discourages
the polyline from bending:

Ebend =
1
m

m−2X

j=1

[τj − 2τj+1 + τj+2]2 (4)

As mentioned at the end of Section 4.2, two abutting brush
paths that share a silhouette path may be merged when their
parameter discontinuity is small. We would like this healing to
happen often to combat fragmentation. Whenever the parameter
discontinuity is small (but not small enough to merge), we coerce
the parameterizations on either side of the break to approach their
average parameter value tave by creating an additional healing vote
(sk, tave) at each abutting endpoint sk of the brush paths. Like
the vote-fitting equation (2), these healing votes contribute to the
overall energy via a sum of squares (with 0, 1 or 2 terms):

Eheal =
X

k

[Topt(sk) − tave]2 (5)

To minimize the total energy E, we solve the system of equations
∂E/∂τj = 0 using LU decomposition [Press et al. 1992]. The
system is non-singular as long as there is at least one vote and ωρ

is nonzero. All of the results demonstrated in the accompanying
video were produced by parameterizing brush paths using Topt,
with the particular weights chosen according to the needs of the
given stylization.

Figure Faces Brush Paths Frames/Sec
video: jumping cactus 4k 10 30
7a: octopus 14k 19 24
7c: machine part 13k 50 20
8-left: not-still life 60k 70 20

Table 1: Frame rates and sizes of representative models.

6 Results

We have implemented the algorithms described in this paper
and used them to render a variety of 3D models with stylized
silhouettes, as demonstrated in Figures 1, 2, 6, 7 and 8. The
accompanying video shows these and other examples in motion.
We have observed the resulting stylized silhouettes to be temporally
coherent across a wide range of styles and camera motions, for
both static and animated geometry. The weights described in
Section 5 offer practical control over the kind of coherence deemed
appropriate by the scene designer. For the extreme examples in
Figure 6 we selected weights to favor either 2D or 3D coherence,
while a more even balance was appropriate for the intermediate
examples of Figures 1cd, 7ab and 8-left. Furthermore, we observed
that the behavior of the system varies smoothly and predictably as
the designer adjusts these weights, and thus does not require careful
tuning to achieve the desired effect.

Our system runs at interactive rates for scenes of moderate
complexity on a 2.4Ghz Intel P4 CPU with nVidia Geforce Ti4200
GPU. For all the scenes shown in this paper and accompanying
video, the frame rate ranges from 15 to 30 fps. Typical rates are
reported in Table 1. For scenes under 100K polygons, the major
factors affecting frame rates are the number and lengths of strokes
rendered, due to visibility testing and computation of brush path
parameterizations. The read-back of the ID image is a limiting
factor that prevents the frame rate from exceeding 30 fps, even for
simple scenes. This shortfall is not fundamental however as it stems
from temporary limitations of GPU drivers and PC bus speeds.

With control over temporal coherence one can deliberately break
coherence in controlled ways, as shown in the accompanying video.
Figures 7b and 8-left show frames from animations wherein lines
are drawn in deliberately noisy styles inspired by “Squigglevision”
(the effect in the hand-animated TV show “Dr. Katz”) and the
“Loose and Sketchy” NPR animation of Curtis [1998]. For these
effects, our system cycles the consecutive frames through a small
set of differing stylizations to yield a jittery look. The temporally
coherent underlying parameterization supports this effect, as well
as a number of others based on animating the stroke stylizations.

While we have emphasized visible silhouettes in this discussion,
these algorithms may be adapted for hidden silhouettes (Figures 1b
and 7c), for creases and other features that remain fixed on the
model (Figures 6d, 7c, and 8-left), and even for suggestive contours
[DeCarlo et al. 2003]. Figure 8-right and the accompanying video
demonstrate that these algorithms also work for animated meshes.

860

Figure 8: Left: “Not-so still life,” with animated silhouettes. Right: “Boogie cactus,” with stylized silhouettes on an animated figure.

7 Conclusion and Future Work

We have presented a way to render coherent stylized silhouettes
of animated 3D models and demonstrated its effectiveness for a
variety of scenes. With the ability to make silhouette stylizations
coherent, we take a significant step toward increasing the expressive
power of 3D computer graphics. This work suggests several areas
for future exploration.

Localized stylization. Our approach allows stylization to be
applied uniformly across all silhouettes of some patch of the mesh.
However, the stylizations of each patch do not interact in any
way. An open question is how can silhouettes transition smoothly
between styles as they cross patch boundaries? One challenge is
the UI: how would the designer specify what areas should have
what style? Another challenge is how to better support styles
that suggest 3D details on the surface, such as fur or leaves. Our
current algorithm does not work for stylizations requiring a special
orientation in 3D, such as tufts of hair that hang down. If we tried
that in our current system, we could make the hair point down on
one side of the model, but on the other side it would stick up.

Simplification. When an object at a distance appears small,
human-crafted illustrations typically omit lines to reduce the image
complexity. An interesting question is how to omit (or merge)
strokes in such scenes automatically, and to do so with temporal
coherence as the camera zooms in or out. The same mechanism
could be useful for meshes that contain many small surface details,
leading to silhouettes that are fragmented into many tiny loops.
The resulting silhouette paths could benefit from simplification into
longer, smooth connected paths.

Acknowledgments

We thank Grady Klein for the animated cactuses, Michael Kowalski
for production help, and Doug DeCarlo and Szymon Rusinkiewicz
for helpful discussions. This research was supported by Intel Labs.

References
BOURDEV, L. 1998. Rendering Nonphotorealistic Strokes with Tem-

poral and Arc-Length Coherence. Master’s thesis, Brown University.
http://www.cs.brown.edu/research/graphics/art/bourdev-thesis.pdf.

BREMER, D. J., AND HUGHES, J. F. 1998. Rapid Approximate Silhouette
Rendering of Implicit Surfaces. In Proc. of Implicit Surfaces, 155–164.

CURTIS, C. J. 1998. Loose and Sketchy Animation. Technical sketch,
SIGGRAPH 98. Also see: http://otherthings.com/uw/loose/.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,
A. 2003. Suggestive Contours for Conveying Shape. In Proceedings of
ACM SIGGRAPH 2003.

DURAND, F. 2002. An Invitation to Discuss Computer Depiction.
Proceedings of NPAR 2002, 111–124.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering.
A. K. Peters.

GOOCH, B., SLOAN, P.-P. J., GOOCH, A., SHIRLEY, P. S., AND RIESEN-
FELD, R. 1999. Interactive Technical Illustration. In 1999 ACM Sympo-
sium on Interactive 3D Graphics, 31–38.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating Smooth Surfaces. In
Proceedings of ACM SIGGRAPH 2000, 517–526.

ISENBERG, T., HALPER, N., AND STROTHOTTE, T. 2002. Stylizing
Silhouettes at Interactive Rates: From Silhouette Edges to Silhouette
Strokes. Computer Graphics Forum (Proc. of Eurographics) 21, 3.

ISENBERG, T., FREUDENBERG, B., HALPER, N., SCHLECHTWEG, S.,
AND STROTHOTTE, T. 2003. A Developer’s Guide to Silhouette
Algorithms for Polygonal Models. IEEE Computer Graphics and
Applications 23, 4 (July/August). To appear.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND

FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing Strokes Directly
on 3D Models. ACM Transactions on Graphics 21, 3, 755–762.

LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN, M. 2000.
Stylized Rendering Techniques for Scalable Real-Time 3D Animation.
In Proceedings of NPAR 2000, 13–20.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV,
L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time
Nonphotorealistic Rendering. Proceedings of SIGGRAPH 97, 415–420.

MASUCH, M., SCHLECHTWEG, S., AND SCHÖNWÄLDER, B. 1997.
daLi! – Drawing Animated Lines! In Proceedings of Simulation und
Animation ’97, SCS Europe, 87–96.

MASUCH, M., SCHUMANN, L., AND SCHLECHTWEG, S. 1998. Animat-
ing Frame-to-Frame Coherent Line Drawings for Illustrative Purposes.
In Proceedings of Simulation und Visualisierung, SCS Europe, 101–112.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic Silhouettes: A
Hybrid Approach. Proceedings of NPAR 2000, 31–38.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTER-
LING, W. T. 1992. Numerical Recipes: The Art of Scientific Computing,
2nd ed. Cambridge University Press.

RASKAR, R. 2001. Hardware Support for Non-photorealistic Rendering.
In Proc. of SIGGRAPH/Eurographics Workshop on Graphics Hardware.

ROSSIGNAC, J., AND VAN EMMERIK, M. 1992. Hidden Contours on a
Framebuffer. Proc. of 7th Workshop on Computer Graphics Hardware.

STROTHOTTE, T., AND SCHLECHTWEG, S. 2002. Non-Photorealistic
Computer Graphics: Modeling, Rendering, and Animation. Morgan
Kaufman.

ZELEZNIK, R., HERNDON, K., AND HUGHES, J. F. 1996. SKETCH: An
Interface for Sketching 3D Scenes. Proc. of SIGGRAPH 96, 163–170.

861

