Partial Visibility for Stylized Lines

Fast High-Quality Line Visibility

Two Fast Methods for High-Quality Line Visibility

13

Partial Visibility for Stylized Lines

Forrester Cole
Princeton University

B

1]

|

DD‘[;JD
i
h i

|

UL

1
|

1\
L

Adam Finkelstein
Princeton University

Figure 1: Anti-aliased line visibility. Left pair: Aliasing in the visibility test for lines (visualized over black) causes breaks and other artifacts
in the rendered lines (drawn on beige model). Right pair: Supersampling and ID peeling removes these artifacts from the rendered lines.

Abstract

A variety of non-photorealistic rendering styles include lines ex-
tracted from 3D models. Conventional visibility algorithms make
a binary decision for each line fragment, usually by a depth test
against the polygons of the model. This binary visibility test pro-
duces aliasing where lines are partially obscured by polygons or
other lines. Such aliasing artifacts are particularly objectionable in
animations and where lines are drawn with texture and other styl-
ization effects. We introduce a method for anti-aliasing the line visi-
bility test by supersampling, analogous to anti-aliasing for polygon
rendering. Our visibility test is inexpensive using current graph-
ics hardware and produces partial visibility that largely ameliorates
objectionable aliasing artifacts. In addition, we introduce a method
analogous to depth peeling that further addresses artifacts where
lines obscure other lines.

Keywords: NPR, Line Drawing, Visibility, Hidden Line Removal

1 Introduction

Common to many non-photorealistic rendering (NPR) techniques
is the use some form of stylized lines. Such lines may include static
3D features such as creases and texture boundaries, as well as view-
dependent features such as silhouettes, suggestive contours and
suggestive highlights. Using the conventional graphics pipeline,
such features may be drawn as solid, straight lines in 3D, and their

Partial Visibility for Stylized Lines

visibilty can be resolved using the standard z-buffer algorithm (typ-
ically offset slightly relative to the polygons to disambiguate visi-
bility where the lines and polygons are colocated). However, the
z-buffer approach cannot be used for lines drawn with stylization
effects such as varying thickness, over- or under-shoot, wavy path,
and texture (e.g., Figure 6) because such effects cause the lines to
be drawn in areas of the image near but not exactly identical to the
location where visibility should be tested. Therefore, algorithms for
drawing stylized lines from 3D models generally compute visibility
for the lines prior to rendering them.

Typical line visibility algorithms generate a binary decision for ev-
ery line fragment. Unfortunately such tests are subject to aliasing,
leading to rendering artifacts such as those shown on the left in Fig-
ure 1. This paper describes an anti-aliasing approch to line visibility
that results in partial visibility at every line fragment and, as shown
on the right, largely ameliorates aliasing artifacts in the rendered
lines. The specific contributions are:

e The notion of rendering lines with partial visibility as a mech-
anism for anti-aliasing.

e An algorithm for computing partial visibility of lines by
super-sampling from an item buffer.

e The use of ID peeling in an item buffer to improve render-
ing quality where lines overlap in image space, and provid-
ing a quality-performance tradeoff when readback of the item
buffer becomes expensive.

2 Background and Related Work

For an overview of line visibililty approaches, especially with re-
gard to silhouettes, see the survey by Isenberg et al. [2003]. One
general strategy combines visibility and rendering by simply caus-
ing the visible lines to appear in the image buffer, for exam-
ple the techniques of Raskar and Cohen [1999] or more recently
Lee et al. [2007], both of which worked at interactive frame rates

by using hardware rendering. These approaches limit stylization
because by the time visibility has been calculated, the lines are al-
ready drawn. On the other hand, explicit computation of line visibil-
ity has been the subject of research since the 1960’s. For example,
Appel [1967] introduced the notion of quantitative invisibility (QI),
and computed it by finding changes in visibility at certain (typically
rare) locations. This approach was further improved and adapted to
NPR by Markosian et al. [1997] who showed it could be performed
at interactive frame rates for models of moderate complexity.

Appel’s algorithm and its variants can be difficult to implement
and are somewhat brittle when the lines are not in general posi-
tion. Thus, Northrup and Markosian [2000] adapted the use of an
item buffer (which had previously been used to accelerate ray trac-
ing [Weghorst et al. 1984]) for the purpose of line visibility, call-
ing it an “ID reference image” in this context. Several subsequent
NPR systems have adopted this approach, e.g. [Kalnins et al. 2002;
Kalnins et al. 2003; Cole et al. 2006], and the algorithm described
in this paper also builds on this strategy. Kaplan [2007] described a
method for computing QI using an item buffer, and we believe we
could compute “partial” QI by combining his method with ours.

Any binary visibility test, including the item buffer approach, will
lead to aliasing artifacts, analogous to those that appear for poly-
gons when sampled into a pixel grid. The classic polygon alias-
ing artifacts are the “jaggies” that appear along the boundaries of a
polygon, where the polygon covers only a fraction of a pixel. Con-
siderable effort has been devoted to antialiasing for polygons [Fo-
ley et al. 1990]. A common strategy for addressing such artifacts is
to supersample, for example with the use of the A-buffer [Carpen-
ter 1984]. This paper demonstrates that such methods, originally
developed for polygons, can be adapted to anti-alias line visibility
with a similar quality-performance tradeoff.

This paper also describes ID peeling, which is based on the depth
peeling approach described by Everitt [2001]. Depth peeling was
originally used to correctly render transparent objects without depth
sorting. As described in Section 3.2, the ID peeling can be adapted
to allow the item buffer to store more than one line per pixel.

Finally we note that partially visible lines have already been used
for various stylistic effects in NPR. For example Winkenbach and
Salesin [1994] and Hertzmann and Zorin [2000] controlled line
density among hatching lines by varying line weight and opacity.

3 Algorithm

The basis of our line rendering pipeline is the item buffer method
of Northrup and Markosian [2000]. An item buffer is an off-screen
buffer that contains visibility information for a set of 3D lines. To
create an item buffer, the polygonal model is first drawn into the
depth buffer. Each individual line is then drawn into the color
buffer with a unique color (as in Figure 1), while testing against
the model’s depth buffer. For a model M, a set of 3D lines L, and
associated colors C, the item buffer is created as follows:

def drawItemBuffer(M, L, C):
set color mask = false, depth mask = true
draw M
set color mask = true, depth mask = false
draw each 1 in L, colored by C

Lines are drawn with depth mask (writing to the depth buffer) dis-
abled to prevent z-fighting between lines. Drawing the item buffer
without depth writing usually does not cause additional visual arti-
facts, because when all lines are drawn in a similar style, it is usu-
ally not possible to tell which line is in front and which is behind.

Partial Visibility for Stylized Lines

|
o|ofe|o|e]efe]e e|efe
elefe]e]e ofe o|e]e
o]e]e]e]e ofe e|efe
o|lefe|e|cfo]e]e e|efe
plofe|e|cfo]o]ofeo|e|e]e
ole]e]e ofe olele]e
olefe]e efe elele]e
elele|efo]o]oWe]eo|e|e]e
o|o]e ole|eflee|e]|e]e
o|e]e ofe elelefe]e
ole]e ofe elelefe]e
elelefolelefelelelolole

Ty

1

Figure 3: 9x Supersampling. Black lines are pixel boundaries, gray
lines are subpixel sample boundaries. The edges of a fully visible
line are dark red. Red subpixel samples fall within this line. Even
though the line is fully visible, no single pixel (black box) contains
nine red samples.

Each pixel of the item buffer contains the unique color of a single
visible line fragment at that pixel. While efficient and fairly accu-
rate, this approach suffers from two major flaws, one general and
one peculiar to the item buffer. The general flaw is that an item
buffer has limited resolution, and cannot be trivially anti-aliased
due to the special meaning of the line colors. Any visibility algo-
rithm (e.g. raytracing) suffers from this restriction, and our super-
sampling implementation also generalizes to visibility approaches
besides the item buffer. The particular flaw is that only a single line
color can exist as a given pixel, even if more than one line frag-
ment is visible at that pixel. This restriction is due to the limited
size of the graphics card’s framebuffer, and ID peeling is a way to
circumvent this hardware restriction.

3.1 Supersampling

The conventional approach to anti-aliasing for rendering is to take
several sub-pixel samples and average their colors to obtain the final
pixel color. This approach fails in the case of the item buffer, how-
ever, because color is used to encode the line indices. Averaging
two colors results in a spurious line index. In order to supersample
the item buffer, we need an aggregating operation that preserves the
proper line indices.

Our approach is first to render the item buffer at high resolution —
between two and six times the full-screen resolution. This can be
done by either increasing the screen resolution and drawing the
lines with width equal to the supersampling factor (width 2 for 2 x 2
supersampling), or drawing multiple copies of the item buffer with
subpixel offsets. We chose the latter, because although drawing the
geometry multiple times can degrade performance, we have noticed
that thick lines in OpenGL behave unpredictably and may vary from
platform to platform. Subpixel offsets also allow the possibility of
jittered supersampling with random offsets, though we have not im-
plemented such a scheme.

A fully visible line fragment may lie across the subpixel samples of
multiple adjacent pixels (Figure 3). If each pixel contains n sam-
ples, we label each sample from 1..n. A fragment’s visibility is

‘— -

N
O

O\

Figure 2: Aliasing at visibility changes. Item buffer aliasing and overwriting at changes in visibility can cause obvious artifacts in stylized
lines (left). For a single item buffer (enlarged solid yellow), the pink edge interferes with the aqua edge as it transitions from visible to
invisible. A hypothetical second item buffer layer (enlarged dotted yellow) could recover the pixels overwritten by other lines. With both
supersampling and ID peeling the aqua line is intact and the pink line is partially visible on top of it (right: two layers of item buffer enlarged

in orange).

determined by the number of sample labels covered in a 3x3 pixel
neighborhood around the fragment. For example, if n = 4 and the
line covers samples 1,3 in one pixel and samples 2,4 in an adjacent
pixel, the fragment has full visibility. Because of the neighborhood
check, this test can overestimate the visibility of a line fragment by
up to one pixel.

3.2 ID Peeling

A conventional item buffer holds only a single ID per pixel. In
even simple models, however, multiple lines will often project to
the same item buffer pixel (Figure 2). This problem becomes worse
as the model becomes more complex. For a large number of cases,
however, only a small number of lines will fall on any single pixel
(Table 2). We can exploit this property by adapting the technique
of depth peeling [Everitt 2001].

In depth peeling, multiple layers of depth information are obtained
by rendering the scene multiple times, each time allowing a frag-
ment to pass the depth test only if it is farther from the camera
than the closest fragment at the same position in the previous layer.
Our version is similar, except that instead of using a second depth
test, we allow a line fragment to pass only if its index is lower than
the highest index at the corresponding pixel in the previous layer
(assuming lines are drawn in ascending order). If the maximum
number of lines overlapping a single pixel is n, we can recover the
full visibility information in n passes.

The result is a set of n item buffers that when taken together, provide
complete visibility information for each line (Figure 2).

Partial Visibility for Stylized Lines

4 Results

Supersampling and ID peeling together repair most of the visual ar-
tifacts associated with visibility testing using an item buffer (e.g.,
Figures 1 and 2). However, both methods impose a performance
cost. Table 1 shows the effect of supersampling and ID peeling on
framerates for the Falling Water model. The Falling Water model
is a relatively complex model with many parallel and overlapping
lines, so it provides a good “stress test” for our algorithm. Both
supersampling and ID peeling impose a sub-linear performance
cost, though ID peeling dominates. Tripling the number of layers
(from 1 to 3) roughly halves frame rate, while for the same perfor-
mance hit the number of samples may be increased from 1 to 9.

We have found that for almost all models and views, nearly full vis-
ibility information can be recovered with three or four item buffer
layers, though to remove all artifacts under animation more lay-
ers may be required. More layers are also required at high super-
sampling levels, as supersampling tends to increase the item buffer
depth complexity.

| Base 4x 9x 16x 25x
1 Layer 17.6 13.6 9.7 7.1 53
2 Layers | 12.5 9.0 6.1 42 3.0
3 Layers 9.8 6.9 45 3.1 2.2

Table 1: Frames per second for supersampling and ID peeling.
Timings are from a rotating a full view of the house model from
Figure 1 at 800x600 window resolution. The model has approxi-
mately 10,000 line paths. Tested system had a 2.3GHz Athlon 64
CPU and an NVIDIA 8800GTS GPU.

Model \ Layers: | 1 2 3 4 5 6
Box 0.89 0.11 O 0 0 0
House view 1 078 0.16 0.05 0.01 O 0
House view 2 0.57 024 0.09 006 0.02 0.01

Table 2: Fraction of item buffer pixels that overlap multiple lines.
Of the item buffer pixels that touch any line, the vast majority touch
four or fewer lines. The box view is Figure 2b, House view 1 is
Figure 1, and House view 2 is the same view, but zoomed out until
the entire model is visible (see Figure 5). No supersampling was
used for this experiment.

0.1

0.08 R

006 1

004 k

Ave. Squared Error

002+ 1

1 1 ——
1 4 9 16 25 36
of Samples

Figure 4: Supersampling Error. The average squared error in visi-
bility against the number of samples taken, for the view in Figure 1.
Error is computed against supersampling at 36x, which is consid-
ered zero error. Eight item buffer layers are used. The knee in the
curve appears at 4 x supersampling, and there is little gain after 16x
supersampling.

Table 2 shows the percentage of item buffer pixels that touch one or
more lines. For simple models such as the box, there are no pixels
that contain more than two lines. For complex models such as the
Falling Water, some pixels can overlap many lines, though for the
view shown in Figure 1, 99% of all pixels that overlap any line
overlap three or fewer lines. For a more difficult view, where the
model is zoomed out until it fits entirely on the screen (Figure 5),
91% of all line pixels overlap three or fewer lines. Exceptional
cases exist: for example, one could imagine zooming out until the
entire model fit under a single pixel. In such pathological cases,
however, perfect visibility information is usually not important.

The gain from supersampling generally falls off rapidly after only
four samples, as measured by the average squared difference in vis-
ibility from an image created with 36 samples (Figure 4). Qualita-
tively, we find there are usually small visual differences that can be
detected up to 16 samples, but after that point the visual impact of
additional samples is minimal.

Finally, the accompanying video demonstrates the impact of these
enhancements under animation. An animated cube shows aliasing
artifacts that are addressed first by ID peeling and then by super-
sampling. The next example shows these effects for the more chal-
lenging Falling Water model, which includes many tiny overlapping
lines. We note that in this example, 9x supersampling is used to-
gether with 8 ID layers, resulting in reduced aliasing. However, we
believe that in this case, more sampling would further improve the
result, but would exceed the memory capacity of our graphics card.

Partial Visibility for Stylized Lines

Figure 5: ID Peeling. Top: the “House 2” view. Bottom: visualiza-
tion of item buffer layers. Colors indicate number of overlapping
lines at each pixel.

5 Conclusion and Future Work

Supersampling and ID peeling together drastically reduce the num-
ber of objectionable visual artifacts when rendering stylized lines.
For interactive applications, most of the benefit can be had by using
only 4 supersampling and 3-4 item buffer layers. For offline ani-
mation, there is no reason not to use many samples and many item
buffer layers to achieve the best possible quality.

There are several directions for future work in this area. First, our
supersampling and ID peeling are currently too slow to achieve the
best possible quality at interactive rates. While we were conscious
of performance when creating our implementation, we left several
possibilities for further optimization open.

For complex models and high supersampling rate, drawing the en-
tire set of lines once per sample can become expensive. In these
cases, it may be advantageous to draw a single, scaled-up item
buffer and deal with the vagaries of thick line drawing.

The major and relatively fixed cost of the item buffer algorithm is
the readback from the GPU and the processing on the CPU. Deeper
layers of ID peeling tend to contain very few non-zero pixels. It
may be possible to gain efficiency by using a hierarchical represen-
tation such as a quadtree where empty branches can be pruned.

In the longer run, our goal is to move the entire line visibility pro-
cessing pipeline onto the GPU and avoid CPU-side processing as
much as possible. Current graphics hardware should contain the
functionality necessary to achieve this, but mapping the item buffer
algorithm onto the GPU efficiently remains a challenge.

| |

N =T

Nyl

Figure 6: Guggenheim Museum. In typical views of complex models, there exist lines at the cusp of visibility (e.g., the rings of the tower).
Top left: conventional item buffer visualization. Top right: resulting image. Bottom pair: 9x supersampling and 5 ID peeling layers.

References

APPEL, A. 1967. The notion of quantitative invisibility and the
machine rendering of solids. In Proceedings of the 22nd national
conference of the ACM, 387-393.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface
method. SIGGRAPH Comput. Graph. 18, 3, 103-108.

CoOLE, F., DECARLO, D., FINKELSTEIN, A., KIN, K., MORLEY,
K., AND SANTELLA, A. 2006. Directing gaze in 3D mod-
els with stylized focus. Eurographics Symposium on Rendering
(June), 377-387.

EVERITT, C., 2001. Interactive order-independent transparency.
Technical report, NVIDIA Corporation, May 2001. Available at
http://www.nvidia.com/.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer graphics: principles and practice (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, 517—
526.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A
Developer’s Guide to Silhouette Algorithms for Polygonal
Models. IEEE Computer Graphics and Applications 23, 4
(July/Aug.), 28-37.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: drawing

Partial Visibility for Stylized Lines

strokes directly on 3d models. In Proceedings of SSIGGRAPH
2002, 755-762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3 (July), 856-861.

KAPLAN, M. 2007. Hybrid quantitative invisibility. In NPAR
’07: Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering, 51-52.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007.
Line drawings via abstracted shading. ACM Transactions on
Graphics 26, 3 (July), 18:1-18:5.

MARKOSIAN, L., KOWALSKI, M. A., GOLDSTEIN, D.,
TRYCHIN, S. J., HUGHES, J. F., AND BOURDEV, L. D. 1997.
Real-time nonphotorealistic rendering. In SIGGRAPH 97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques, 415-420.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: a hybrid approach. In NPAR ’00: Proceedings of the Ist
international symposium on Non-photorealistic animation and
rendering, 31-37.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. In SI3D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics, ACM Press, New York, NY, USA, 135—
140.

WEGHORST, H., HOOPER, G., AND GREENBERG, D. P. 1984.
Improved computational methods for ray tracing. ACM Trans-
actions on Graphics 3, 1 (Jan.), 52-69.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In Proceedings of SIG-
GRAPH 1994, 91-100.

Fast High-Quality Line Visibility

Forrester Cole
Princeton University

Adam Finkelstein
Princeton University

Figure 1: Examples of models rendered with stylized lines. Stylized lines can provide extra information with texture and shape, and are more

aesthetically appealing than conventional solid or stippled lines.

Abstract

Lines drawn over or in place of shaded 3D models can often pro-
vide greater comprehensibility and stylistic freedom that shading
alone. A substantial challenge for making stylized line drawings
from 3D models is the visibility computation. Current algorithms
for computing line visibility in models of moderate complexity are
either too slow for interactive rendering, or too brittle for coherent
animation. We present a method that exploits graphics hardware
to provide fast and robust line visibility. Rendering speed for our
system is usually within a factor of two of an optimized rendering
pipeline using conventional lines, and our system provides much
higher visual quality and flexibility for stylization.

Keywords: NPR, Line Drawing, Visibility, Hidden Line Removal

1 Introduction

Stylized lines play a role in many applications of non-photorealistic
rendering (NPR) for 3D models (Figure 1). Lines can be used alone
to depict shape, or in conjunction with polygons to emphasize fea-
tures such as silhouettes, creases, and material boundaries. While
graphics libraries such as OpenGL provide basic line drawing ca-
pabilities, their stylization options are limited. Desire to include
effects such as texture, varying thickness, or wavy paths has lead
to techniques to draw lines using textured triangle strips (strokes),
for example those of Markosian, et al. [1997]. Stroke-based tech-
niques provide a broad range of stylizations, as each stroke can be
arbitrarily shaped and textured.

Fast High-Quality Line Visibility

A major difficulty in drawing strokes is visibility computation.
Conventional, per-fragment depth testing is insufficient for drawing
broad strokes (Figure 2). Techniques such as the item buffer intro-
duced by Northrup and Markosian [2000] can be used to compute
visibility of lines prior to rendering strokes, but are much slower
than conventional OpenGL rendering and are vulnerable to alias-
ing artifacts. While techniques exist to reduce these artifacts, they
induce an even greater loss in performance. This paper presents a
new method for testing visibility that removes the primary cause of
aliasing in current techniques, and brings performance much closer
to that of conventional rendering by moving the entire line visibility
and drawing pipeline onto graphics hardware.

The specific contributions of this paper are:

e The description of an entirely GPU-based pipeline for hidden
line removal and stylized stroke rendering.

e The introduction of the segment atlas as a data structure for
efficient and accurate line visibility computation.

Applications for this approach include any context where interac-
tive rendering of high-quality lines from 3D models is appropriate,
including games, design and architectural modeling, medical and
scientific visualization and interactive illustrations.

2 Background and Related Work

The most straightforward way to augment a shaded model with
lines using the conventional rendering pipeline is to draw the poly-
gons slightly offset from the camera and then to draw the lines,
clipped against the model via the z-buffer. This is by far the most
common approach, used by programs ranging from CAD and archi-
tectural modeling to 3D animation software, and because it lever-
ages the highly-optimized pipeline implemented by graphics cards
it imposes little overhead over drawing the shaded polygons alone.
Unfortunately the lines resulting from this process admit only min-
imal stylistic control (color, fixed width, and in some implementa-
tions screen-space dash patterns).

Another general strategy combines visibility and rendering by sim-
ply causing the visible lines to appear in the image buffer, for ex-
ample the techniques of Raskar and Cohen [1999] or more recently

e 4

Per-Fragment Visibility Precomputed Visibility

a

Top View e

Figure 2: Naive depth testing per-fragment vs. precomputed visibil-
ity. When drawing wide lines, only lines that lie entirely outside the
model will be drawn correctly (b and d). Lines a, c, e are partially
occluded by the model, even when some polygon offset is applied.
Visibility testing along the spine of the lines (red dots) prior to ren-
dering strokes solves the problem.

Lee et al. [2007], both work at interactive frame rates by using hard-
ware rendering. For example, the Raskar and Cohen method draws
back-facing polygons in black, slightly displaced towards the cam-
era from the front-facing polygons, so that black borders appear at
silhouettes. Such approaches also limit stylization because by the
time visibility has been calculated, the lines are already drawn.

To depict strokes with obvious character (e.g. texture, wobbles,
varying width, deliberate breaks or dash patterns, tapered endcaps,
overshoot, or haloes) Northrup and Markosian [2000] introduced
a simple rendering trick wherin the OpenGL lines are supplanted
by textured triangle strips. The naive approach to computing vis-
ibility for such strokes would be to apply a z-buffer test to the tri-
angle strips describing strokes — a strategy that fails where many
of the strokes interpenetrate the model (Figure 2). Therefore, NPR
methods utilizing this type of stylization generally need to com-
pute line visibility prior to rendering the lines. Line visibility has
been the subject of research since the 1960’s. Appel [1967] in-
troduced the notion of quantitative invisibility, and computed it
by finding changes in visibility at certain (typically rare) loca-
tions. This approach was further improved and adapted to NPR
by Markosian et al. [1997] who showed it could be performed at
interactive frame rates for models of modest complexity.

Appel’s algorithm and its variants can be difficult to implement
and are somewhat brittle when the lines are not in general posi-
tion. Thus, Northrup and Markosian [2000] adapted the use of an
item buffer (which had previously been used to accelerate ray trac-
ing [Weghorst et al. 1984]) for the purpose of line visibility, call-
ing it an “ID reference image” in this context. Several subsequent
NPR systems have adopted this approach, e.g. [Kalnins et al. 2002;
Kalnins et al. 2003; Cole et al. 2006]. For an overview of line
visibility approaches (especially with regard to silhouettes, which
present a particular challenge because they lie at the cusp of visibil-
ity), see the survey by Isenberg et al. [2003]. Any binary visibility

Fast High-Quality Line Visibility

test, including the item buffer approach, will lead to aliasing arti-
facts, analogous to those that appear for polygons when sampled
into a pixel grid. To ameliorate aliasing artifacts Cole and Finkel-
stein [2008] showed how to adapt to line drawing the supersampling
and depth-peeling strategies previous described for polygons, intro-
ducing the notion of partial visibility for lines.

While the item buffer approach can determine line visibility at in-
teractive frame rates of moderate complexity, it is slow for large
models. Moreover, computation of partial visibility — which signif-
icantly improves visual quality, especially under animation — im-
poses a further burden on frame rates. Our current method provides
high-quality hidden line removal (with or without partial visibility)
at interactive frame rates for complex models.

3 Algorithm

Our algorithm begins with a set of lines extracted from the model.
Most of our experiments have focused on lines that are fixed on the
model, for example creases or texture boundaries. However, our
system also supports the extraction of silhouette edges from a pool
of faces whose normals are interpolated (e.g. the rounded top of
the clevis on the left in Figure 1). Our goal is to determine which
portions of these segments are visible.

Our line visibility pipeline has three major stages, illustrated in Fig-
ure 3: line projection and clipping (Section 3.1), creation of the
segment atlas (Section 3.2), and visibility testing (Section 3.3). All
stages execute on the GPU, and all data required for execution re-
sides in GPU memory in the form of OpenGL framebuffer objects
or vertex buffer objects. The input to the algorithm is a set of N line
strips (which we call paths), each divided into one or more seg-
ments. The output of the algorithm is a segment atlas containing
per-sample visibility information for each segment. Finally, after
visibility has been determined via this pipeline, there are two gen-
eral strategies for rendering the lines, as described in Section 3.4.

3.1 Projection and Clipping

The first stage of the visibility pipeline begins with a set of can-
didate line segments, projects them, and clips them to the viewing
frustum. Ideally, we would use the GPU’s clipping hardware to clip
each segment. However, in current graphics hardware the output
of the clipper is not available until the fragment program stage, af-
ter rasterization has already been performed. We therefore use a
fragment program to project and clip the segments. The input to
the program is a six-channel framebuffer object packed with the
3D coordinates of the endpoints of each segment (p, q) (Figure 3a).
This buffer must be updated at each frame with the positions of any
moving line segments. The output of the program is a nine-channel
buffer containing the 4D homogeneous clip coordinates (p’,q’) and
the number of visibility samples / (Figure 3b). The number of visi-
bility samples / is determined by:

1= Tllpy, — ay,/I/K] (1

where (p),,,q),) are the 2D window coordinates of the segment end-
points, and k is a screen-space sampling rate. The factor k trades off
positional accuracy in the visibility test against segment atlas size.
We usually set kK = 1 or 2, meaning visibility is determined every
1 or 2 pixels along each line; there is diminishing visual benefit in
determining with any greater accuracy the exact position at which
a line becomes occluded.

A value of [= 0 is returned for segments that are entirely outside
the viewing frustum. Segments for which / <1 (i.e., sub-pixel sized
segments) are discarded for efficiency if not part of a path, but oth-
erwise must be kept or the path will appear disconnected.

DY 1
P 4945 7/
q ZVA ” (a) 3D Segment Table
3 | B |
 HHE B

7 (55773

(b) Projected, Clipped
Segment Table

3 07 11217/18[21)
0 7 12

v [l] | I
a]]

(c) Atlas Position

(d) Segment Atlas

(e) Depth Buffer Testing

(f) Final Rendering

Figure 3: Pipeline. (a) The 3D line segments (p;,q;) are stored in
a table. (b) A fragment program projects and clips each segment
to produce (pf,q;), and determines a number of samples /; propor-
tional to its screen space length. (c) A scan operation computes
the atlas positions s from the running sum of /. (d) Sample posi-
tions v are interpolated from (p’,q’) and written into the segment
atlas at offset s. Visibility values « for each sample are determined
by probing the depth buffer (e) at v, and are used to generate the
final rendering (f). Note the schematic colors used throughout for
the blue-yellow and pink-green segments.

While not a specific contribution of our method, we note that per-
forming projection and clipping in this manner makes it very easy
to rapidly extract silhouette edges from a portion of a mesh whose
normals are interpolated, such as the rounded top of the clevis on
the left in Figure 1. During clipping, neighboring face normals may
be checked for a silhouette edge condition (one front-facing and one
back-facing polygon). If the edge is not a silhouette, it is discarded
by setting / = 0. This method is similar to the approach of Brabec
and Seidel [2003] for computing shadow volumes on the GPU.

3.2 Segment Atlas Creation

The segment atlas is a table of segment samples. Each segment
is allocated / entries in the atlas, and each entry consists of a clip
space position v and a visibility value & (Figure 3d). The interpo-
lated sample positions v are created by drawing single-pixel wide

Fast High-Quality Line Visibility

lines into the atlas, using the conventional OpenGL line drawing
commands. A fragment program performs the interpolation of p’
and ¢’ and the perspective division step to produce each v, simulta-
neously checking the visibility at the sample (Section 3.3).

Before the segment atlas can be constructed, we need to determine
the offset s of each segment into this data structure, which is the
running sum of the sample counts / (Figure 3c). The sum is cal-
culated by performing an exclusive scan operation on / [Sengupta
et al. 2007]. Once the atlas position s is computed, each segment
may be drawn in the atlas independently and without overlap.

The most natural representation for the segment atlas is as a very
long, 1D texture. Unfortunately, current GPUs do not allow for
arbitrarily long 1D textures, at least as targets for rendering. The
segment atlas can be mapped to two dimensions by wrapping the
atlas positions at a predetermined width w, usually the maximum
texture width W allowed by the GPU (W = 4096 or 8192 texels is
common). The 2D atlas s is given by:

s = (s mod w, |s/w]) 2)

The issue then becomes how to deal with segments that extend out-
side the texture, i.e., segments for which (s mod w) +1 > w. One
way to address this problem is to draw the segment atlas twice, once
normally and once with the projection matrix translated by (—w, 1).
Long segments will thus be wrapped across two consecutive lines in
the atlas. Specifically, suppose L is the largest value of /, which can
be conservatively capped at the screen diagonal distance divided by
k. If w> L, drawing the atlas twice is sufficient, because we are
guaranteed that each segment requires at most one wrap. Drawing
twice incurs a performance penalty, but as the visibility fragment
program is usually the bottleneck (and is still run only once per
sample) the penalty is usually small.

For some rendering applications, however, it is considerably more
convenient if segments do not wrap (Section 3.4). In this case, we
establish a gutter in the 2D segment atlas by setting w =W — L. The
atlas position is then only drawn once. This approach is guaranteed
to waste W — L texels per atlas line. Moreover, this waste exac-
erbates the waste due to our need to preallocate a large block of
memory for the segment atlas without knowing how full it will be-
come. Nevertheless, the memory usage of the segment atlas (which
is limited by the number of lines drawn on the screen) is typically
dominated by that of the 3D and 4D segment tables (which must
hold all lines in the scene).

3.3 Visibility Testing

As mentioned in Section 3.2 the visibility test for each sample is
performed during rasterization of the segments into the segment
atlas. The visibility of a sample is computed by comparing the pro-
jected depth value of the sample with the depth value of the near-
est polygon under the sample, much like a conventional z-buffer
scheme. As noted by Cole and Finkelstein [2008], aliasing in the
visibility test for lines can cause severe visual artifacts, especially
under animation. Unlike the item buffer approach, the segment at-
las method is not vulnerable to interference among lines, making a
multi-layered segment atlas unnecessary. However, there are still
two potential sources of aliasing error: aliasing of the per-sample
depth test, and aliasing in the depth buffer with respect to the origi-
nal polygons. Both these sources of aliasing can be addressed with
supersampling.

During the drawing of the atlas, a fragment program computes
an interpolated homogeneous clip space coordinate for each sam-
ple and performs the perspective division step. The resulting clip
space z value is then compared to a depth buffer of the scene poly-
gons. Using a single test for this comparison produces aliasing

(e)

Figure 4: Aliasing in visibility test. Results for varying number of
samples and scale of depth buffer. (a) 1 sample, 1x depth buffer.
(b) 16 samples, 1x depth buffer. (c) 1 sample, 3x depth buffer. (d)
16 samples, 3x depth buffer. Red box in (e) indicates location of
magnified area in the Falling Water model.

(Figure 4a). Adding additional probes in a box filter configuration
around the sample gives a more accurate occlusion value for the
line sample (Figure 4b). Additional depth probes are cheap, but not
free. The impact of increased sampling is more visible in complex
scenes, with large segment atlases (see Table 1).

Any number of depth probes will not produce an accurate result if
the underlying depth buffer has aliasing error. While impossible to
eliminate entirely, this source of aliasing can be reduced through
supersampling of the depth buffer by increasing the viewport reso-
lution. Since typical applications are seldom fillrate bound for sim-
ple operations like drawing the depth buffer, increasing the size of
the buffer typically has little impact on performance outside of an
increase in memory usage. While simply scaling the depth buffer
without adding additional depth probes for each sample produces
a marginal increase in image quality (Figure 4c), combining depth
buffer scaling and depth test supersampling largely eliminates alias-
ing artifacts (Figure 4d).

3.4 Stroke Rendering

After visibility is computed, all the information necessary to draw
strokes is available in the projected and clipped segment table and
the segment atlas. The most efficient way to render the strokes is to
generate, on the host, a single quad per segment. A vertex program
then positions the vertices of the quad relative to (p’,q’), taking into
account the pen width and proper mitreing for multi-segment paths.
A fragment program textures the quad with a 2D pen texture, and
modulates the texture with the corresponding 1D visibility values

Fast High-Quality Line Visibility

Figure 5: Variation in style. A different texture may be used for
lines that fail the visibility test (left), allowing visualization of
hidden structures. Our method also produces attractive results for
solid, simple styles (right).

Figure 6: Line density control. One reason to read back the segment
atlas to the host is to control screen space line density. Left: no
density control. Right: line density reduction as in [Cole2006].

from the segment atlas. Additional stylization effects such as line
overshoot can be added easily in the vertex program stage (Fig-
ure 5). All results shown in this paper were generated using this
rendering method, with the exception of Figure 6.

In some cases it may be desirable to read back the segment atlas vis-
ibility values for processing on the host. One example could be to
implement a stroke-based line density control scheme (e.g., [Grabli
et al. 2004; Cole et al. 2006]). An example of the latter method for
line density control, implemented in our system as a post-process to
the visible paths, is shown in Figure 6. Reading back and process-
ing the entire segment atlas is inefficient, since for reasonably com-
plex models the vast majority of line samples in any given frame
will have zero visibility. Thus we apply a stream compaction oper-
ation [Horn 2005] to the segment atlas visibility values. This yields
a packed buffer with only visible samples remaining, which is suit-
able for readback to the host. An added benefit of the segment atlas
approach compared to the item buffer approach is that the line sam-
ples in this compacted buffer are ordered by path and segment, and
can therefore be efficiently converted to geometry. By comparison,
the visibility samples in an item buffer are ordered by screen space
position, and must be sorted or otherwise processed before use. For
models of moderate complexity the performance of this rendering
approach is roughly comparable to that of the GPU-rendered ap-
proach described above, with a additional fixed cost of ~ 20 ms per
frame for stream compaction and read-back.

For either rendering strategy described above, the geometry is styl-
ized via 2D images of marks in the style of pen, pencil, char-
coal, etc. We use periodic textures parameterized uniformly in
screenspace. Changes in this paremeterization from frame to frame
influence temporal coherence of the lines, as can be observed in the
accompanying video. Since the emphasis in this paper is on visibil-
ity, we use the simple strategy of fixing the “zero” parameter value
along the length of the stroke at its screen-space center. A more
sophisticated strategy that seeks temporal coherence from frame to
frame was described by Kalnins et al. [2003].

10

Model \ #1tris # segs OGL IB1 IB2 SAl SA2
clevis 1k 1.5k 1000+ 87 20 149 149
house 15k 14k 300+ 24 34 119 97
ship 300k 300k 42 96 0.52 30 26
office 330k 300k 32 7.0 035 25 16
ship+s - 500k - - - 20 14
office+s - 400k - - - 22 13

Table 1: Frame rates (fps) for various models rendering methods.
All frames rendered at 1024 x 768. Timings for clevis and house are
averaged over an orbit of the model. Timings for ship and office are
averaged over a walkthrough sequence (accompanying video). The
“+s” indicates silhouettes were extracted and drawn. OGL: con-
ventional OpenGL lines. IB1: single item buffer [Northrup2000].
IB2: 9x supersampled item buffer with 3 layers [Cole2008]. SA1:
single probe segment atlas (comparable to IB1). SA2: 9 probe seg-
ment atlas with 2x scaled depth buffer (comparable to 1B2).

4 Results

We implemented the segment atlas approach using OpenGL and
GLSL, taking care to manage GPU-side memory operations effi-
ciently. For comparison we also implemented an optimized con-
ventional OpenGL rendering pipeline using line primitives, and the
item buffer approach of Northrup and Markosian [2000], and the
improved item buffer approach of Cole and Finkelstein [2008]. We
did not use NVIDIA’s CUDA architecture, because the segment at-
las drawing step uses conventional line rasterization and the raster-
ization hardware is unavailable from CUDA.

Table 1 shows frame rates for four models ranging from 1k-500k
line segments. These numbers were generated on a commodity
Dell PC running Windows XP with an Intel Core 2 Duo 2.4 GHz
CPU and 2GB RAM, and an NVIDIA 8800GTS GPU with 512MB
RAM. For small models, our approach pays a moderate overhead
cost, and therefore is at least several factors slower than conven-
tional OpenGL rendering (though absolute speed is still high). For
the more complex models, however, our method is within 50% of
conventional OpenGL, while providing high image quality (SA2).
Our low image quality setting (SA1) is within 75%, and still pro-
vides good quality, though with some aliasing artifacts.

Our method is always considerably faster than the item buffer based
approach, but the most striking difference is when comparing the
high quality modes of each method. The item buffer approach with
9x supersampling and 3 layers, as suggested by [Cole and Finkel-
stein 2008], gives similar image quality to our method with 9 depth
probes and 2x scaled depth buffer. Our method, however, delivers
a performance increase of up to 50x for complex models.

As mentioned in Section 3.1, our method also allows for easy ex-
traction and rendering of silhouette edges on the GPU. The last two
rows of Table 1 show the performance impact for our method when
extracting and rendering silhouettes. The increase in cost is roughly
proportional to the increase in the total number of potential line
segments. We did not implement silhouette extraction for the other
methods, however, silhouette extraction can be a costly operation
when performed on the CPU.

While accurate timing of the stages of our algorithm is difficult
due to the deep OpenGL pipeline, the major costs of the algo-
rithm (~80-90% of total) lie in the sample visibility testing stage,
depth buffer drawing stage (for complex models), and segment atlas
setup. Projection, clipping, and stroke rendering are minor costs.

Fast High-Quality Line Visibility

Figure 7: Ship model. The ship model has 300k triangles and 500k
total line segments, and can be rendered at high-quality and inter-
active frame rates using our method.

5 Conclusion and Future Work

The proposed algorithm allows rendering of high-quality stylized
lines at speeds approaching those of the conventional OpenGL ren-
dering pipeline. The algorithm provides improved temporal co-
herence and less aliasing (sparkle) than previous approaches for
drawing stylized lines, making it suitable for animation of com-
plex scenes. Compared with previous approaches for computing
line visibility, it is robust and conceptually simple. We believe this
approach will be useful for interactive applications such as games
and interactive design and modeling software, where previously the
performance penalty for using stylized lines has been prohibitive.

Future work in this area may include extending the approach to in-
clude further integration of line density control methods such as
proposed in [Grabli et al. 2004; Cole et al. 2006]. As mentioned in
Section 3.4 our current system allows for such algorithms by read-
ing the visible line paths back onto the CPU and then processing
the visible lines using previous methods. However, we believe that
it will be possible to handle the entire pipeline on the GPU. One
challenge is that these approaches will need to be adapted to deal
with partial visibility of lines.

While not a direct extension of our method, we would also like it
to handle other view-dependent lines such as smooth silhouettes
[Hertzmann and Zorin 2000], suggestive contours [DeCarlo et al.
2003], and apparent ridges [Judd et al. 2007]. Including these line
types at a reasonable performance cost may require an extraction
algorithm that executes on the GPU. In contrast to lines that are
fixed on the model, consistent parameterization of such lines from
frame to frame presents its own challenge [Kalnins et al. 2003].

While currently fast, we believe there are opportunities to further
improve the scalability of our approach. In our implementation,
all segments are recorded explicitly in the segment table, which
we show give interactive performance for models with hundreds
of thousands of segments. Many large models make use of scene
graph hierarchies with instancing — which affords two opportuni-
ties for improved scalability. First, an improvement to the segment
table would allow for line set instancing, which would make more
efficient use of texture memory on-card. Second, hierarchical rep-
resentations can be used to quickly reject sections of the model that
not potentially visible.

11

Acknowledgments

We would like to thank Michael Burns and the Google 3D Ware-
house for the models shown in this paper. This work was sponsored
in part by the NSF grant I1S-0511965.

References

APPEL, A. 1967. The notion of quantitative invisibility and the
machine rendering of solids. In Proceedings of the 22nd national
conference of the ACM, 387-393.

BRABEC, S., AND SEIDEL, H.-P. 2003. Shadow volumes on
programmable graphics hardware. In EUROGRAPHICS 2003,
vol. 22 of Computer Graphics Forum, Eurographics, 433-440.

COLE, F., AND FINKELSTEIN, A. 2008. Partial visibility for styl-
ized lines. In NPAR 2008.

COLE, F., DECARLO, D., FINKELSTEIN, A., KIN, K., MORLEY,
K., AND SANTELLA, A. 2006. Directing gaze in 3D mod-
els with stylized focus. Eurographics Symposium on Rendering
(June), 377-387.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Trans. Graph. 22, 3, 848-855.

GRABLI, S., DURAND, F., AND SILLION, F. 2004. Density mea-
sure for line-drawing simplification. In Proceedings of Pacific
Graphics.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proceedings of SIGGRAPH 2000, 517-526.

HORN, D. 2005. Stream reduction operations for gpgpu applica-
tions. In GPU Gems 2, M. Pharr, Ed. Addison Wesley, ch. 36,
573-589.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A
Developer’s Guide to Silhouette Algorithms for Polygonal
Models. IEEE Computer Graphics and Applications 23, 4
(July/Aug.), 28-37.

Jupp, T., DURAND, F., AND ADELSON, E. H. 2007. Apparent
ridges for line drawing. ACM Trans. Graph. 26, 3, 19.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: drawing
strokes directly on 3d models. In Proceedings of SIGGRAPH
2002, 755-762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3 (July), 856-861.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007.
Line drawings via abstracted shading. ACM Transactions on
Graphics 26, 3 (July), 18:1-18:5.

MARKOSIAN, L., KowaLSKIl, M. A., GOLDSTEIN, D.,
TRYCHIN, S. J., HUGHES, J. F., AND BOURDEYV, L. D. 1997.
Real-time nonphotorealistic rendering. In Proceedings of SIG-
GRAPH 1997, 415-420.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: a hybrid approach. In NPAR 2000, 31-37.

Fast High-Quality Line Visibility

Figure 8: Office model. The office model has five levels, each with
detailed furniture, totaling 330k triangles and 400k line segments.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. In Proceedings of SI3D 1999, ACM Press, New York,
NY, USA, 135-140.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for gpu computing. In Graphics Hardware
2007, 97-106.

WEGHORST, H., HOOPER, G., AND GREENBERG, D. P. 1984.
Improved computational methods for ray tracing. ACM Trans-
actions on Graphics 3, 1 (Jan.), 52—-69.

12

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010 707

Two Fast Methods for
High-Quality Line Visibility

Forrester Cole and Adam Finkelstein

Abstract—Lines drawn over or in place of shaded 3D models can often provide greater comprehensibility and stylistic freedom than
shading alone. A substantial challenge for making stylized line drawings from 3D models is the visibility computation. Current
algorithms for computing line visibility in models of moderate complexity are either too slow for interactive rendering, or too brittle for
coherent animation. We introduce two methods that exploit graphics hardware to provide fast and robust line visibility. First, we present
a simple shader that performs a visibility test for high-quality, simple lines drawn with the conventional implementation. Next, we offer a
full optimized pipeline that supports line visibility and a broad range of stylization options.

Index Terms—Visible line, surface algorithms, non-photorealistic rendering.

1 INTRODUCTION

STYLIZED lines play a role in many applications of
nonphotorealistic rendering (NPR) for 3D models. Lines
can be used alone to depict shape, or in conjunction with
polygons to emphasize features such as silhouettes, creases,
and material boundaries. While graphics libraries such as
OpenGL provide basic line drawing capabilities, their
stylization options are limited. Desire to include effects such
as texture, varying thickness, or wavy paths has lead to
techniques that draw lines using textured triangle strips
(strokes), for example, those of Markosian, et al. [1]. Stroke-
based techniques provide a broad range of stylizations, as
each stroke can be arbitrarily shaped and textured.

A major difficulty in drawing strokes is visibility
computation. Conventional, per-fragment depth testing is
insufficient for drawing broad strokes, because the strokes
are partially occluded by the model itself (Fig. 2). Techniques
such as the item buffer introduced by Northrup and
Markosian [2] can be used to compute visibility of lines prior
to rendering strokes, but are much slower than conventional
OpenGL rendering and are vulnerable to aliasing artifacts.
While techniques exist to reduce these artifacts [3], they
induce an even greater loss in the performance.

This paper presents two methods that exploit graphics
hardware to draw strokes efficiently and with high-quality
visibility testing:

1. Spine test shader. This simple method can be
used in a conventional line drawing pipeline with
minimal modification, but supports a limited range
of stylization.

2. Segment atlas. This method carries a higher imple-
mentation cost that the spine test shader, but provides

o The authors are with Princeton University, 35 Olden St., Princeton, NJ
08544. E-mail: {fcole, af}@cs.princeton.edu.

Manuscript received 25 Feb. 2009; revised 20 May 2009; accepted 11 Aug.
2009; published online 19 Aug. 2009.
Recommended for acceptance by M. McGuire and E. Haines.
For information on obtaining reprints of this article, please send e-mail to:
tocg@computer.org, and reference IEEECS Log Number
TVCGSI-2009-02-0045.
Digital Object Identifier no. 10.1109/TVCG.2009.102.

Two Fast Methods for High-Quality Line Visibi

lit
1018 0210 © 2010 teEE

stored visibility values can be used for stylization, as
well as to properly handle curved strokes.

Both methods rely on a conventional depth buffer to
determine visibility, but provide support for supersampling
in both the depth buffer and the lines themselves (Fig. 5).
Both methods provide a similar level of visibility quality
and speed.

The major difference between the methods is that the
segment atlas method stores visibility information in an
intermediate data structure (the segment atlas), while the
spine test method does not. The spine test method is a
single-pass approach that computes stroke visibility at the
same time as the final stroke color. The segment atlas
method, by contrast, computes and stores the visibility
information for all strokes prior to rendering. Computing
visibility prior to rendering provides the option to filter or
otherwise manipulates the visibility values, allowing effects
such as overshoot, haloing, and detail elision. An additional
benefit is the ability to properly parameterize strokes with
multiple segments, such as curved strokes (e.g., the top of
the clevis shape in Fig. 1 (left)).

This paper expands on an earlier paper by the same
authors [4] that introduced the segment atlas method. The
spine test method is introduced for the first time in this
paper and offers a simpler, more conventional alternative to
the segment atlas method. This paper also expands upon
the description of the segment atlas in [4], adding
implementation improvements, further discussion of styli-
zation effects, and a comparison to the spine test method.

Applications for these approaches include any context
where interactive rendering of high-quality lines from 3D
models is appropriate, including games, design and
architectural modeling, medical and scientific visualization,
and interactive illustrations.

2 BACKGROUND AND RELATED WORK

The most straightforward way to augment a shaded model
with lines using the conventional rendering pipeline is to
draw the polygons slightly offset from the camera, and
then, to draw line primitives, clipped against the model via

Published by the IEEE Computer Society

13

708 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO.5, SEPTEMBER/OCTOBER 2010

Fig. 1. Examples of models rendered with stylized lines. Stylized lines can provide extra information with texture and shape, and are more

aesthetically appealing than conventional solid or stippled lines.

the z-buffer. This is by far the most common approach, used
by programs ranging from CAD and architectural modeling
to 3D animation software, because it leverages the highly
optimized pipeline implemented by graphics cards and
imposes little overhead over drawing the shaded polygons
alone. Unfortunately, hardware-accelerated line primitives
are usually rasterized with a specialized approach such as
described by Wu [5], and allow only minimal stylistic
control (color, fixed width, and in some implementations
screen-space dash patterns).

Another general strategy combines visibility and render-
ing by simply causing the visible lines to appear in the
image buffer. The techniques of Raskar and Cohen [6] and
Lee et al. [7] work at interactive frame rates by using
hardware rendering. For example, the Raskar and Cohen
method draws backfacing polygons in black, slightly
displaced toward the camera from the front-facing poly-
gons, so that black borders appear at silhouettes. Such
approaches limit stylization because by the time visibility
has been calculated, the lines are already drawn.

To depict strokes with obvious character (e.g., texture,
wobbles, varying width, deliberate breaks or dash patterns,
tapered endcaps, overshoot, or haloes) Northrup and
Markosian [2] introduced a simple rendering trick wherein
the OpenGL lines are supplanted by textured triangle strips.
The naive approach to computing visibility for such strokes
would be to apply a z-buffer test to the triangle strips—a
strategy that fails where the strokes interpenetrate the
model (Fig. 2). Therefore, NPR methods utilizing this type
of stylization generally have computed line visibility prior
to rendering the lines. Line visibility has been the subject of
research since the 1960s. Appel [8] introduced the notion of
quantitative invisibility and computed it by finding changes
in visibility at certain locations such as line junctions. This
approach was further improved and adapted to NPR by
Markosian et al. [1] who showed it could be performed at
interactive frame rates for models of modest complexity.

Appel’s algorithm and its variants can be difficult to
implement and are somewhat brittle when faced with
degenerate segments or overlapping vertices (i.e., when the
lines are not in general position). Thus, Northrup and
Markosian [2] adapted the use of an item buffer (which had
previously been used to accelerate ray tracing [9]) for the
purpose of line visibility, calling it an “ID reference image”
in this context. Several subsequent NPR systems have

adopted this approach, e.g?]., [10], [11], [12]. For an overview
Two Fast Methods for High-Quality Line Visibility

of line visibility approaches (especially with regard to
silhouettes, which present a particular challenge because
they lie at the cusp of visibility), see the survey by Isenberg
et al. [13].

Any binary visibility test, including the item buffer
approach, will lead to aliasing artifacts, analogous to those
that appear for polygons when sampled into a pixel grid. To
ameliorate aliasing artifacts, Cole and Finkelstein [3]
adapted to lines the supersampling and depth-peeling
strategies previous described for polygons, which we will
revisit in Section 3.2.

While the item buffer approach can determine line
visibility at interactive frame rates for scenes of moderate
complexity, it is slow for large models. Moreover, computa-
tion of partial visibility—which significantly improves
visual quality, especially under animation—imposes a
further burden on frame rates. The two algorithms
described in Sections 3 and 4 provide high-quality hidden

....ooooooo....

Per-Fragment Visibility

Top View €

Fig. 2. Per-fragment visibility versus precomputed visibility. When
drawing wide lines using a naive per-fragment visibility test, only lines
that lie entirely outside the model will be drawn correctly (b and d). Lines
a, ¢, and e are partially occluded by the model, even when some polygon
offset is applied. Visibility testing along the spine of the lines (red dots)
prior to rendering strokes solves the problem.

14

COLE AND FINKELSTEIN: TWO FAST METHODS FOR HIGH-QUALITY LINE VISIBILITY 709

Input A (Geometry Shader A

Fragment Shader (Result

NS\ ’
N
N\

¢

=
N\
\-

3D Line Segments Clip-Space Strokes

h — 4

Visibility at Spine

Textured Strokes \Visible, Textured Strokes/

Fig. 3. Steps in the spine test method. The input is a set of 3D line segments. A geometry shader projects the line segments and creates clip-space
strokes, preserving the homogenous positions for perspective-correct interpolation. A fragment shader checks visibility at the spine of the stroke and
computes a texture color. The visibility and texture are combined to produce the final result.

line removal (with or without partial visibility) at inter-
active frame rates for complex models.

3 MEeTHOD 1: SPINE TEST

Our first method is simple to implement and provides good
quality in many cases. The method requires only a single
pass to draw the depth buffer and a single pass to draw the
lines, so it can be easily added to an existing line rendering
implementation. However, the method does not support
some important stylization options. In particular, because
it generates an independent stroke for each line segment, it
cannot properly parameterize stroke paths with multiple
segments such as seen in Fig. 4; such paths require a
continuous parameterization if they are to be rendered with
texture. Nonetheless, many models (such as the Falling
Water model in Figs. 6 and 11) have few curved stroke paths,
and can thus be effectively rendered with this method.

The algorithm begins with a set of 3D line segments
extracted from the model. Most of our experiments have
focused on lines that are always drawn no matter the
camera angle, for example, creases or texture boundaries.
However, our system can also selectively draw edges that
lie on silhouettes (e.g., the horizontal lines at the top of the
clevis model shown on the left in Fig. 1) by checking the
adjacent face normals during stroke generation.

The line segments are passed to the GPU using standard
OpenGL drawing calls with the primitive-type GL_LINES.
A geometry shader turns each line segment into a
rectangular stroke and assigns texture coordinates to each
vertex (Section 3.1). After the strokes are positioned and
assigned texture coordinates, a fragment shader tests
visibility at the nearest point on the spine of the stroke.
As explained in Section 3.2, this visibility test can be a single
depth probe or an average of many probes. Finally, the
alpha value of each fragment is set to the visibility value of
the spine. These steps are visualized in Fig. 3.

3.1 Stroke Generation

Newer graphics processors that support OpenGL 3.0 or
the GL_EXT_geometry_shader4 extension (for example,
NVIDIA’s 8800 series) can execute geometry shaders,
which are GPU programs that execute between the vertex
and fragment stages and have the ability to add or remove

vertices from a primitive. Geometry shaders are thus a
Two Fast Methods for High-Quality Line Visibility

natural choice for creating stroke geometry on the GPU.
On hardware that does not support geometry shaders, it is
also possible to generate strokes by creating a degenerate
quad for each line segment and assigning the positions
and texture coordinates in a vertex shader (similar to the
approach of [14]). The vertex shader approach, however,
requires additional vertices to be passed from the host to
the GPU and additional software support on the CPU side
when compared with the geometry shader approach.

In the spine test method, a geometry shader takes as
input line segments and produces as output rectangles,
represented as triangle strips. The shader also determines
the screen-space length of the rectangle and assigns texture
coordinates so that the stroke texture is scaled appropri-
ately. The examples in this paper use 2D images of marks in
the style of pen, pencil, charcoal, etc., and are parameterized
at a constant rate in screen space. Graphics hardware by
default uses perspective-correct texture interpolation,
which tends to stretch and compress textures on strokes
that are not perpendicular to the viewing direction. Uni-
form parameterization in screen space requires perspective-
correct texturing to be disabled. Conveniently, control over
perspective-correct interpolation is provided by the
GL_EXT_gpu_shader4 extension, and by OpenGL 3.0.

To limit crawling artifacts, we use the simple strategy of
fixing the “zero” parameter value at the screen-space center

‘\“ummm,"’
“,
“

* *
\)
.. e \“\
o % S %
R
>) = -
.. ... = ;..
s) 3 E)
e P 3 : %
e o 3 F %
< o o z B =
< . @ Z <
. o [% > 53
) * %, 55
o ” S
S

R
X
A.
%,

(a) (b)

Fig. 4. Curved stroke paths. Strokes such as at the top and bottom of the
cylinder consist of multiple segments. (a) The correct approach is to
parameterize the entire loop as a single stroke. (b) Texturing each
segment independently results in an incorrect result. Single-segment
strokes as on the sides of the cylinder are not affected.

15

710 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO.5, SEPTEMBER/OCTOBER 2010

i-1

frame i
(Inset,
Enlarged)

i+1

i @ (far) (far)

(a) (b)

Rotating Cube

(far) (far)

Depth Buffer
Visualization

(© (d)

Fig. 5. Visibility aliasing. Aliasing in line visibility usually occurs at changes in occlusion. In this example, the red line is revealed behind the blue line
as the cube rotates (left). (a) 1 sample, 1x depth buffer: the artifacts, while transient, can be severe for a single visibility sample with a standard
depth buffer. (b) many samples, 1x depth buffer: multiple depth samples soften the artifacts. (c) 1 sample, 3x depth buffer: supersampling the depth
buffer without increasing the number of depth samples does not solve the problem, (d) but combining a supersampled depth buffer with multiple
samples gives high-quality results: many samples, 3x depth buffer. Top: enlargement showing partially occluded red line with blue line overlaid.

Bottom: depth buffer visualization showing visibility samples for red line.

of the stroke. A more sophisticated strategy that seeks
temporal coherence from frame to frame was described by
Kalnins et al. [11].

While not a novel contribution of our method, we note
that generating strokes in this manner makes it very easy to
rapidly extract silhouette edges from smooth portions of a
mesh, such as the rounded top of the clevis on the left in
Fig. 1. The extraction is performed by sending all mesh
edges to the GPU, then selecting the edges that lie on a
silhouette boundary. To provide the necessary information
to the GPU, neighboring face normals are packed into the
vertex attributes for an edge prior to rendering the strokes.
While generating a stroke for an edge, these face normals
are checked for a silhouette condition (one front-facing and
one back-facing polygon). If the edge is not a silhouette, it is
discarded and no stroke is generated. The edge can be
discarded directly by a geometry shader, or indirectly by a
vertex shader by sending the vertices behind the camera.

Unfortunately, when drawing stroke paths with many
segments, there is no way to know at the geometry shader
level the proper parameterization of each segment, since
each segment is processed independently and in parallel. It
is, therefore, impossible to texture the entire path as one
continuous stroke. This drawback is not very noticeable for
models with many long, straight strokes, but is objection-
able for models with many curving paths and short
segments (Fig. 4). In contrast, the segment atlas method
described in Section 4 supports computation of arc length
and avoids this problem.

3.2 Visibility Testing

In order to perform depth testing at the spine of the stroke,
the depth buffer must be drawn in a separate pass and
loaded as a texture into the fragment shader. The visibility
of a fragment is then computed by comparing the depth

value of the closest point on the spine of the stroke with the
Two Fast Methods for High-Quality Line Visibility

depth value of the polygon under the spine, much like a
conventional z-buffer scheme.

This simple approach commonly suffers from errors due
to aliasing. There are two potential sources of aliasing:
undersampling of the depth probes and polygon aliasing
(“jaggies”) in the depth buffer itself (both shown in Fig. 5).
Aliasing errors occur at changes in line visibility, such as
when a line is revealed by a sliding or rotating object. These
errors manifest as broken or dashed lines. Broken lines may
or may not be objectionable in still imagery, but under
animation, the breaks move, causing popping and sparkling
artifacts. Any individual line will only exhibit visibility
artifacts from a small set of camera angles. However,
complex models (such as shown in this paper) include so
many lines that errors are very common (Fig. 6).

As noted by Cole and Finkelstein [3], aliasing can be
alleviated by determining a partial visibility value for each
line fragment. Conceptually, partial visibility can be
computed by replacing the line (which has zero width)
with a narrow quadrilateral, then computing the conven-
tional « (occlusion) value for that quadrilateral. In our case,
partial visibility is determined by making multiple depth
probes in a box filter configuration around the line sample
(Fig. 5b). Additional depth probes are usually very fast
(Section 5), but can become expensive on limited hardware.

Any number of depth probes will not produce an
accurate result if the underlying depth buffer has aliasing
error (Fig. 5b). While impossible to eliminate entirely, this
source of aliasing can be reduced through supersampling of
the depth buffer by increasing the viewport resolution.
Simply scaling the depth buffer without adding additional
depth probes for each sample produces a marginal increase
in image quality (Fig. 5c), but combining depth buffer
scaling and depth test supersampling largely eliminates
aliasing artifacts (Fig. 5d). Since typical applications are
seldom fill rate bound for simple operations like drawing

16

COLE AND FINKELSTEIN: TWO FAST METHODS FOR HIGH-QUALITY LINE VISIBILITY 711

()

Fig. 6. Aliasing in visibility test. Results for varying number of
samples and scale of depth buffer. Green box in (e) indicates location
of magnified area. Visibility supersampling is used in both the spine
test and segment atlas methods. (a) 1 sample, 1x depth buffer.
(b) 16 samples, 1x depth buffer. (¢) 1 sample, 3x depth buffer.
(d) 16 samples, 3x depth buffer. (e) Falling water.

the depth buffer, increasing the size of the buffer typically
has little impact on the performance outside of an increase
in memory usage. Results of these techniques for a complex
model can be seen in Fig. 6.

4 METHOD 2: SEGMENT ATLAS

Stylization for curved strokes, or even simple effects such as
endcaps or haloes, require some nonlocal information. For
example, each segment in a curved stroke must have texture
coordinates based on the entire arc length of the stroke. This
information is costly to compute with a single-pass
approach such as the spine test, because much of the
computation is redundant across segments. The same
observation holds for endcaps or haloes: while in principle,
each fragment could check a large neighborhood to
determine the closest visibility discontinuity, it is much
more efficient to store the visibility in a separate pass.
Additional effects that can be achieved by precomputing
visibility are explained in Section 4.5.

The segment atlas approach is designed to efficiently
compute and store the visibility information for every
stroke in the scene. The input includes 3D line segments, as
with the spine test method, but also line strips (stroke

paths). The output is a segment atlas containing visibility
Two Fast Methods for High-Quality Line Visibility

samples for each projected and clipped stroke, spaced by a
constant screen-space distance (usually 2 pixels).

The pipeline has four major stages, illustrated in Fig. 7:
line projection and clipping, computation of atlas offsets,
drawing the segment atlas and testing visibility, and stroke
rendering. All stages execute on the GPU, and all data
required for execution reside in GPU memory in the form of
OpenGL framebuffer objects or vertex buffer objects.

4.1 Projection and Clipping

The first stage of the pipeline begins with a set of candidate
line segments, projects them, and clips them to the viewing
frustum. Ideally, we would use the GPU’s clipping hardware
to clip each segment. However, in current graphics hardware,
the output of the clipper is not available until the fragment
program stage after rasterization has already been per-
formed. We, therefore, must use a fragment program to
project and clip the segments, using our own clipping code.
The fragment program uses the same camera and projection
matrices as the conventional projection and clipping pipeline.

The input to the program is a six-channel framebuffer
object packed with the world-space 3D coordinates of the
endpoints of each segment (p,q) (Fig. 7, step 1). In our
implementation, this buffer must be updated at each frame
with the positions of any moving line segments. However,
the fragment program could also be modified to transform
the segments with a time-varying matrix. The output of the
fragment program is a nine-channel buffer containing the
4D homogeneous clip coordinates (p’, q') and the number of
visibility samples [. The number of visibility samples [is
defined as:

L= [llp,, — d,ll/k1, (1)

where (p/,,q),) are the 2D window coordinates of the
segment endpoints, and £ is a screen-space sampling rate.
The factor k trades off positional accuracy in the visibility
test against segment atlas size. We usually set k=1 or 2,
meaning that visibility is determined every 1 or 2 pixels
along each line; there is diminishing benefit in determining
with any greater accuracy the exact position at which a line
becomes occluded.

A value of | = 0 is returned for segments that are entirely
outside the viewing frustum. Segments for which [<1 (i.e.,
subpixel-sized segments) are discarded for efficiency if not
part of a path, but otherwise must be kept or the path will
appear disconnected.

In a separate step, the sample counts [are converted into
segment atlas offsets s by computing a running sum (Fig. 7,
step 2). The sum is calculated by an exclusive-scan
operation on [[15]. Once the atlas offsets s are computed,
each segment may be drawn in the atlas independently and
without overlap.

If the system must handle multisegment paths, the
segment table may also include two extra channels to store
the offsets of each segment from the start and end of its
path. By comparing these pointers, a stand-alone segment
can be distinguished from a segment that is part of a path.
This information may be used during the final stroke
rendering step to smoothly connect adjacent segments of
multisegment paths (Section 4.4).

17

712 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO.5, SEPTEMBER/OCTOBER 2010

Step 1: Step 2:
Project and Clip Compute Offsets
0 20 0 20
p ’/H A5 3107)i3]
Input . .I I
Project and Clip Exclusive Scan
D (fragment shader) (fragment shader)

21 Line Segments

DN/

& P

Step 3:
Create Atlas

20

Step 4:
Render Strokes

B

123 126
Create and
D Texture Strokes
(geom., fragment)

Create Samples +
Test Visibility
(geom., fragment)

A\

Fig. 7. Segment atlas pipeline. The input 3D line segments (p;, q,) are stored in a table on the GPU. At each frame, each 3D segment is projected
and clipped by a fragment shader, which also determines a number of samples I; proportional to screen-space length (step 1). Next, a scan
operation computes the atlas offsets s from the running sum of [(step 2). The sample positions v are then created by interpolating (p’, q") and writing
to the segment atlas at offset s (step 3). Visibility values «; are determined by probing the depth buffer at each v; (see Fig. 9). Finally, strokes are
created at (p,q’) and textured with the visibility values « to produce the final rendering. Note the colors used throughout to identify individual

segments.

Finally, silhouette edges may also be extracted during
the projection and clipping stage by loading face normals
alongside the vertex world coordinates and checking for a
silhouette edge condition at each segment. If the edge is not
a silhouette, it is discarded by setting [= 0. This method is
similar to the approach of Brabec and Seidel [16] for
computing shadow volumes on the GPU. Note, however,
that our current method is unable to stitch these silhouette
edges into continuous multisegment silhouette paths, e.g.,
the outline of a sphere. The parameterization of multi-
segment paths is computed by the exclusive-scan operation,
which assumes that the segment indexes are neighboring
and constantly increasing. The segments of a silhouette
path, by contrast, are in effectively random order in the
segment table. In addition, silhouette paths based on
polygon edges can include degeneracies (see [17]). Con-
tinuous parameterization of silhouette paths on the GPU is,
therefore, an area for future work.

4.2 Segment Atlas Creation

The purpose of the segment atlas is to store the visibility
samples for every segment in the scene. The ith segment is
allocated [; visibility samples, or entries, in the atlas (for
example, segment 2 might be 5 pixels long and be assigned
three entries, while segment 3 might be 20 pixels long and
be assigned 10 entries). Each set of entries begins at the
segment atlas offset s;. Each entry consists of a 3D screen-
space sample position v and a visibility value «. While
storing the sample position v is unnecessary after visibility
has been computed, current GPUs commonly support only
four-channel textures, and the visibility values require only
a single channel. On future hardware, storing only the
visibility values o would save GPU memory.

To compute the screen-space positions v of the samples,
we make use of the rasterization hardware of the GPU. We
set up the segment atlas as a rendering target (e.g., an
OpenGL framebuffer object) and draw single-pixel wide

lines (proxy lines) into the atlas, as follows: The host passes
Two Fast Methods for High-Quality Line Visibility

one vertex to the GPU, identified by an index ¢, for each
segment. A geometry shader then looks up the ith entry in
the projected and clipped segment table, and produces two
vertices for a single proxy line segment. If the hardware
does not support geometry shaders, the host must pass two
vertices to a vertex shader, each identified with index ¢ and
a binary “start vertex/end vertex” flag. The shader then
positions the vertex at either the beginning or the end of the
proxy segment, depending on the flag.

In either case, the proxy segment i begins in the atlas at
position s; and is [; pixels long. The color of the first vertex
of the proxy is set to the clip-space position p, and the color
of the second vertex is set to .. When the proxy lines are
drawn, the rasterization hardware performs the interpola-
tion of the clip-space positions. A fragment shader then
performs the perspective division and viewport transforma-
tion steps to produce the screen-space coordinate v (Fig. 7,
step 3). At the same time, the fragment shader checks the
visibility of the sample as described in Section 4.3. The final
output of the fragment shader is the interpolated position v
and the visibility value a.

The most natural representation for the segment atlas is a
very long, 1D texture. Unfortunately, current GPUs do not
allow for arbitrarily long 1D textures as targets for
rendering. The segment atlas must, therefore, be mapped
to two dimensions (Fig. 8). This mapping can be achieved
by wrapping the atlas positions at a predetermined width
w, usually the maximum texture width W allowed by the
GPU (W = 4,096 or 8,192 texels is common). The 2D atlas
positions s are given by

s = (smod w, [s/w]). (2)

The issue then becomes how to deal with segments that
extend outside the texture, i.e.,, segments for which
(s mod w) + 1 > w. One way to address this problem is to
draw the segment atlas twice, once normally and once with

18

COLE AND FINKELSTEIN: TWO FAST METHODS FOR HIGH-QUALITY LINE VISIBILITY 713

Step 3a:
Draw Segments into Atlas
p
Option 1: Draw Twice, with Translation
N

Option 2: Draw Once, with Gutter

0 w w

L

Fig. 8. Segment atlas wrapping. Because current generation GPUs do
not support arbitrarily long 1D textures, the segment atlas must be
wrapped to fit in a 2D texture. One option is to draw the atlas twice,
wrapping segments that fall outside the width w (shown faded). Another
option is to establish a gutter of size L to catch segments that fall outside
w. Here, W is the maximum texture width and L is the maximum
segment length.

the projection matrix translated by (—w, 1). Long segments
will thus be wrapped across two consecutive lines in the
atlas (Fig. 8 top). Specifically, suppose L is the largest value
of I, which can be conservatively capped at the screen
diagonal distance divided by k. If w > L, drawing the atlas
twice is sufficient, because we are guaranteed that each
segment requires at most one wrap. Drawing twice incurs a
performance penalty, but as the visibility fragment program
is usually the bottleneck (and is still run only once per
sample), the penalty is usually small.

For some rendering applications, however, it is consider-
ably more convenient if segments do not wrap (Section 4.4).
In this case, we establish a gutter in the 2D segment atlas by
setting w = W — L. The atlas position is then only drawn
once (Fig. 8 bottom). This approach is guaranteed to waste
W — L texels per atlas line. Moreover, this waste exacerbates
the waste due to our need to preallocate a large block of
memory for the segment atlas without knowing how full it
will become. Nevertheless, the memory usage of the segment
atlas (which is limited by the number of lines drawn on the
screen) is typically dominated by that of the 3D and 4D
segment tables (which must hold all lines in the scene).

4.3 Visibility Computation

As mentioned in Section 4.2, the visibility test for each
sample is performed during rasterization of the segments
into the segment atlas. While drawing the atlas, a fragment
program computes an interpolated homogeneous clip-space
coordinate for each sample and performs the perspective
division step. The resulting clip-space z value is then

compared to a depth buffer (Fig. 9).
Two Fast Methods for High-Quality Line Visibility

Step 3b:
Compute Visibility

segment atlas depth buffer

v LN T
]

Test Visibility

(fragment shader)

I T T

o

0 5 8 18

Fig. 9. Visibility testing. The first three segments in Fig. 7 are shown.
Each sample in the segment atlas corresponds to a fragment. The
fragment shader uses the screen-space position v; to test the sample
against the depth buffer, recording the result in the visibility value «;.
Colors are the same as in Fig. 7.

The visibility test itself is similar to the test for the spine
test approach, with the same configuration of multiple
depth probes and supersampled depth buffer. Since
visibility is only tested once per spine sample, however,
rather than once for every fragment along the width of the
stroke, even more depth probes can be efficiently computed.

4.4 Stroke Rendering

After visibility is computed, all the information necessary to
draw strokes is available in the projected and clipped
segment table and the segment atlas. The most efficient way
torender the strokes is to generate, on the host, a single point
per segment. A geometry shader then uses the point as an
index and looks up the appropriate (p’,q’) in the projected
and clipped segment table. The segment endpoints may also
be looked up in the segment atlas, if the positions v are
stored in the atlas. However, we find that the original
segment table is more convenient since both vertex positions
are stored at the same texture offset in different channels.
The geometry shader then emits a quad that lies between the
segment endpoints, with width determined by the pen style.

As with the spine test method, hardware without
geometry shaders can generate the same quads, albeit less
efficiently, by generating a degenerate quad on the host and
positioning the four vertices in a vertex shader (again,
similar to [14]).

Lastly, a fragment shader textures the quad with a 2D
pen texture and modulates the texture with the correspond-
ing 1D visibility values from the segment atlas. A range of
effects can be achieved by varying the pen texture and color
with visibility (Figs. 10 and 13).

4.5 Additional Effects

By storing the visibility and screen-space positions simulta-
neously for all strokes in the scene, the segment atlas
method allows a range of additional rendering effects not
possible with the spine test method. Some examples include:

19

714 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO.5, SEPTEMBER/OCTOBER 2010

iy

=
W=

(a) (b)

Fig. 10. Variation in style. (a) A different texture may be used for lines
that fail the visibility test, allowing visualization of hidden structures.
(b) Our method also produces attractive results for solid, simple styles.

4.5.1 Mitering

In order to render multisegment strokes without visible
gaps or overlap between segments, the ends of adjacent
segments must be smoothly connected (mitered). Proper
mitering of segment ¢ requires the positions and orienta-
tions of segments ¢ —1 and i+ 1 (if they exist). This
information can be looked up in the projected and clipped
segment table (see Section 4.1). Corner mitering (joining
with a sharp corner) can be performed in the final rendering
step by either a geometry or vertex shader, simply by
adjusting the four vertices of each segment quad. While not
implemented in this work, smooth mitering (joining with a
rounded corner) should also be possible by emitting extra
vertices from a geometry shader.

4.5.2 Filtering

The segment atlas also provides the opportunity to filter the
visibility information to fill small holes or remove short,
spurious sections. Other image processing operations can
be performed on the atlas as well. For example, erosion and
dilation can produce line overshoot or undershoot (haloing)
effects (Fig. 1). A convincing sketchy overshoot effect can be
achieved by setting the dilation amount to a constant
screen-space length, then modulating this length pseudor-
andomly with the path index (or index of the starting
segment of the path) to vary the size of the overshoot. For
operations such as dilation, it is necessary to add padding
around each segment in the atlas so that the segment can
dilate beyond its normal length. Padding can be added
easily by increasing the number of samples when comput-
ing the atlas offset (Section 4.2).

4.5.3 Density Control

The segment atlas can also be used to store any type of per-
sample information, not just visibility. For example, it can
store a measure of the density of lines in the local area, as
produced by a stroke-based line density control scheme
[18], [12]. Results from the system described in [12], as
implemented using a segment atlas, are shown in Fig. 11.

4.6 Readback

For applications that are difficult to implement entirely on
the GPU, such as stroke simplification [19] or complex NPR
shaders [20], the segment atlas can be read back to the host.
Reading back and processing the entire segment atlas is
inefficient, however, because for reasonably complex

models, the vast majority of line samples in any given
Two Fast Methods for High-Quality Line Visibility

(a) (b)

Fig. 11. Line density control. The segment atlas can store information
besides visibility, such as local line density. (a) No density control.
(b) Line density reduction as described in [12].

frame will have zero visibility. We can reduce this cost by
applying a stream compaction operation [21] to the segment
atlas visibility values. This operation yields a packed buffer
with only visible samples remaining. For models of
moderate complexity, compaction and readback adds an
additional cost of ~20 ms per frame.

5 RESULTS

We implemented the two methods using OpenGL and
GLSL, taking care to manage GPU-side memory operations
efficiently. For comparison, we also implemented an
optimized conventional OpenGL rendering pipeline using
line primitives, the item buffer approach of Northrup and
Markosian [2], and the improved item buffer approach of
Cole and Finkelstein [3]. We did not use NVIDIA’s CUDA
architecture, because the segment atlas drawing step uses
conventional line rasterization and the rasterization hard-
ware is unavailable from CUDA.

Table 1 shows frame rates for four models ranging from
1k-500k line segments. The clevis, house (Falling Water),
ship, and office models are shown in Figs. 10, 11, and 12.
The “+s” indicates that silhouettes were extracted and
drawn in addition to the fixed lines. Timings for clevis and
house are averaged over an orbit of the model, whereas
timings for the ship and office are averaged over a walk-
through sequence. All frames are rendered at 1,024 x 768
using a commodity Dell PC running Windows XP with an
Intel Core 2 Duo 2.4 GHz CPU and 2 GB RAM, and an
NVIDIA 8800GTS GPU with 512 MB RAM.

TABLE 1
Frame Rates (FPS) for Various Models and Methods

Model | clevis house ship office ship+s off.+s
tris 1k 15k 300k 330k - -
seg 1.5k 14k 300k 300k 500k 400k
OGL | 1000+ 300+ 42 32 - -
IBlo 87 24 9.6 7.0 - -
IBhi 20 34 0.5 04 - -
STlo 900+ 146 26 28 19 23
SThi 300+ 75 24 25 19 21
SAlo 400+ 119 33 29 23 24
SAhi 200+ 76 25 24 22 21

20

COLE AND FINKELSTEIN: TWO FAST METHODS FOR HIGH-QUALITY LINE VISIBILITY 715

-

(@)

(b)

Fig. 12. Complex models. (a) The ship model has 300k triangles and 500k total line segments. (b) The office model has five levels, each with detailed
furniture, totaling 330k triangles and 400k line segments. Both models can be rendered at high-quality and interactive frame rates using both the

spine test and segment atlas methods.

We tested the following rendering algorithms: (OGL)
conventional OpenGL lines; (IBlo) single item buffer
[Northrup2000]; (IBhi) 9x supersampled item buffer with
three layers [Cole2008]; (STlo/SAlo) spine test shader and
segment atlas, respectively, with a single depth probe,
which is comparable to IBlo; and (SThi/SAhi) spine test
shader and segment atlas, respectively, with nine depth
probes and 2x scaled depth buffer, which is comparable
to IBhi. For small models (clevis and house), both the
spine test and segment atlas methods are slower than
conventional OpenGL rendering by factors of 2-4x,
though overall speed is still high. Additional samples
and depth buffer scaling also incur a noticeable penalty
for these models. For the more complex models (ship and
office), the penalty for using either method declines. Both
methods are within 50 percent of conventional OpenGL
in the high-quality modes (SThi/SAhi). The basic segment
atlas (SAlo), which suffers from some aliasing artifacts
but still provides good quality, is within 75 percent of
OpenGL on both the office and ship models.

Both of the new methods are always considerably
faster than the item buffer-based approach, but the most

striking difference is when comparing the high-quality
Two Fast Methods for High-Quality Line Visibility

modes of each method. The item buffer approach with 9x
supersampling and three layers, as suggested by [3], gives
similar image quality to our methods with nine depth
probes and 2x scaled depth buffer. The new methods,
however, deliver performance increases of up to 50x for
complex models.

As mentioned in Sections 3.1 and 4.1, both methods
allow for easy extraction and rendering of silhouette edges
on the GPU. The last two rows of Table 1 show the
performance impact when extracting and rendering silhou-
ettes. The increase in cost is roughly proportional to the
increase in the total number of potential line segments. We
did not implement silhouette extraction for the other
methods. However, silhouette extraction can be a costly
operation when performed on the CPU.

While accurate timing of the stages of our method is
difficult due to the deep OpenGL pipeline, the major
costs (~80-90 percent of total) lie in the sample visibility
testing stage and depth buffer drawing stage. For small
models, the sample visibility testing is dominant, while
for large models, the depth buffer creation is the primary
single cost. Projection, clipping, and stroke rendering are
minor costs.

21

716 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO.5, SEPTEMBER/OCTOBER 2010

Fig. 13. Drawing hidden lines using the segment atlas. Locally controlling line visibility, using the stylized focus technique of [12], can reveal the
internal structure of a model while providing context or hiding unimportant areas. Because the segment atlas stores visibility information for all
strokes, hidden and visible lines can be drawn with no extra cost to performance.

6 CONCLUSION AND FUTURE WORK

The proposed methods allow rendering of high-quality
stylized lines at speeds approaching those of the conven-
tional OpenGL rendering pipeline. They provide improved
temporal coherence and less aliasing (sparkle) than pre-
vious approaches for drawing stylized lines, making them
suitable for animation of complex scenes. The spine test
shader (method 1) is particularly simple, and should be
easy to include in existing line rendering systems. The
segment atlas pipeline (method 2), while more complex, is
still fairly easy to implement, and provides a broader range
of stylization options. Compared with previous approaches
for computing line visibility, both are robust and concep-
tually simple. We believe that these approaches will be
useful for interactive applications such as games and design
and modeling software, where previously, the performance
penalty for using stylized lines has been prohibitive.

The ability to store full visibility information for all lines
allows for special rendering of hidden lines (Fig. 13), but also
opens several possibilities for future work. Just as Cole et al.
[12] introduced “stylized focus” as an artistic effect inspired
by photorealistic defocus effects, we can imagine a “stylized
motion blur” effect inspired by photorealistic motion blur.
By storing the segment atlases from previous frames, we
could blur the visibility values from consecutive frames rather
than the final rendered strokes. Blurring visibility could, for
example, allow a disappearing stroke to break up into
shrinking splotches of ink, rather than simply fading out.

Storing copies of the segment atlas from previous frames
could also allow for performance increases in situations
where computing the atlas samples is a significant cost.
Rather than recomputing each sample from scratch at each
frame, the sample positions could be reprojected from
frame to frame and fully refreshed intermittently. Reprojec-
tion would distort the sampling rate of each line and
introduce errors for clipped lines, but may be worthwhile in
some applications.

Other future work in this area may include adapting
line density control methods such as proposed in [18],

[12] to operate more effectively on the GPU. Our current
Two Fast Methods for High-Quality Line Visibility

implementation of [12] exhibits some sparkling artifacts
under animation and causes a hit in the performance.
One challenge is that these approaches do not take into
account partial visibility of lines, which is necessary for
smooth animation.

While not a direct extension of our method, we would
also like it to handle other view-dependent lines such as
smooth silhouettes [17], suggestive contours [22], and
apparent ridges [23]. Including these line types at a
reasonable performance cost may require an extraction
algorithm that executes on the GPU. In contrast to lines that
are fixed on the model, consistent parameterization of such
lines from frame to frame presents its own challenge [11].

ACKNOWLEDGMENTS

The authors would like to thank the editors and reviewers
for their comments and assistance in revising the paper, and
Michael Burns and the Google 3D Warehouse for the
example models. This work was sponsored in part by the
US National Science Foundation (NSF) grant IIS-0511965.

REFERENCES

[1] L. Markosian, M.A. Kowalski, D. Goldstein, S.J. Trychin, J.F.
Hughes, and L.D. Bourdev, “Real-Time Nonphotorealistic
Rendering,” Proc. ACM SIGGRAPH '97, pp. 415-420, 1997.

[2]].D. Northrup and L. Markosian, “Artistic Silhouettes: A Hybrid
Approach,” Proc. Int’l Symp. Non-Photorealistic Animation and
Rendering (NPAR "00), pp. 31-37, June 2000.

[3] F. Cole and A. Finkelstein, “Partial Visibility for Stylized
Lines,” Proc. Int’l Symp. Non-Photorealistic Animation and
Rendering (NPAR '08), pp. 9-13, June 2008.

[4] F. Cole and A. Finkelstein, “Fast High-Quality Line Visibility,”
Proc. Symp. Interactive 3D Graphics (13D '09), pp. 115-120, Feb. 2009.

[5] X. Wu, “An Efficient Antialiasing Technique,” Proc. ACM
SIGGRAPH '91, pp. 143-152, 1991.

[6] R. Raskar and M. Cohen, “Image Precision Silhouette Edges,”
Proc. Symp. Interactive 3D Graphics (SI3D '99), pp. 135-140, 1999.

[71 Y. Lee, L. Markosian, S. Lee, and J.F. Hughes, “Line Drawings via
Abstracted Shading,” ACM Trans. Graphics, vol. 26, no. 3, pp. 18:1-
18:5, July 2007.

[8] A. Appel, “The Notion of Quantitative Invisibility and the
Machine Rendering of Solids,” Proc. 22nd Nat’'l Conf. ACM,
pp- 387-393, 1967.

22

COLE AND FINKELSTEIN: TWO FAST METHODS FOR HIGH-QUALITY LINE VISIBILITY 717

]

[10]

(1]

[12]

[13]

(14]

[15]

[1o]

(17
(18]

(19]

[20]

[21]

(22]

(23]

H. Weghorst, G. Hooper, and D.P. Greenberg, “Improved
Computational Methods for Ray Tracing,” ACM Trans. Graphics,
vol. 3, no. 1 pp. 52-69, Jan. 1984.

R.D. Kalnins, L. Markosian, B.J. Meier, M.A. Kowalski, J.C. Lee,
P.L. Davidson, M. Webb, J.F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing Strokes Directly on 3D Models,” Proc.
ACM SIGGRAPH 02, pp. 755-762, 2002.

R.D. Kalnins, P.L. Davidson, L. Markosian, and A. Finkelstein,
“Coherent Stylized Silhouettes,” ACM Trans. Graphics, vol. 22,
no. 3 pp. 856-861, July 2003.

F. Cole, D. DeCarlo, A. Finkelstein, K. Kin, K. Morley, and A.
Santella, “Directing Gaze in 3D Models with Stylized Focus,” Proc.
Eurographics Symp. Rendering '06, pp. 377-387, June 2006.

T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T.
Strothotte, “A Developer’s Guide to Silhouette Algorithms for
Polygonal Models,” IEEE Computer Graphics and Applications,
vol. 23, no. 4, pp. 28-37, July/Aug. 2003.

M. McGuire and J.F. Hughes, “Hardware-Determined Feature
Edges,” Proc. Int’l Symp. Non-Photorealistic Animation and Rendering
(NPAR '04), pp. 35-47, 2004.

S. Sengupta, M. Harris, Y. Zhang, and].D. Owens, “Scan
Primitives for GPU Computing,” Proc. Graphics Hardware '07,
pp- 97-106, 2007.

S. Brabec and H.-P. Seidel, “Shadow Volumes on Programmable
Graphics Hardware,” Proc. EUROGRAPHICS 03, vol. 22, pp. 433-
440, Sept. 2003.

A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proc.
ACM SIGGRAPH 00, pp. 517-526, 2000.

S. Grabli, F. Durand, and F. Sillion, “Density Measure for Line-
Drawing Simplification,” Proc. Pacific Graphics, pp. 309-318, 2004.
P. Barla, J. Thollot, and F. Sillion, “Geometric Clustering for Line
Drawing Simplification,” Proc. Eurographics Symp. Rendering "05,
pp- 183-192, 2005.

S. Grabli, E. Turquin, F. Durand, and F. Sillion, “Programmable
Style for NPR Line Drawing,” Proc. Eurographics Symp. Rendering
04, pp. 33-44, 2004.

D. Horn, “Stream Reduction Operations for GPGPU Applica-
tions,” GPU Gems 2, M. Pharr, ed., ch. 36, pp. 573-589, Addison
Wesley, 2005.

D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive Contours for Conveying Shape,” ACM Trans.
Graphics, vol. 22, no. 3, pp. 848-855, 2003.

T. Judd, F. Durand, and E.H. Adelson, “Apparent Ridges for Line
Drawing,” ACM Trans. Graphics, vol. 26, no. 3, 2007.

Two Fast Methods for High-Quality Line Visibility

Forrester Cole received the PhD degree in
computer science from Princeton University in
June 2009. His research interests include per-
ception of abstract imagery and interactive
methods for nonphotorealistic rendering. He
studied computer science at Harvard College
and graduated in 2002. He is currently a
postdoctoral researcher in the Computer Gra-
phics Group at the Massachusetts Institute of
Technology.

Adam Finkelstein received the PhD degree
from the University of Washington in 1996. He is
an associate professor of computer science at
Princeton University. His research interests in
computer graphics include nonphotorealistic
rendering, multiresolution techniques, anima-
tion, and applications of computer graphics in
art. He is also one of the organizers of the Art of
Science Exhibition. From 1987 to 1990, he was
a software engineer at Tibco, where he wrote
software for people who trade stock. He was an undergraduate student
at Swarthmore College (class of 1987) where he studied physics and
computer science.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

23

