
In SIGGRAPH 2003

Suggestive Contours for Conveying Shape

Doug DeCarlo1 Adam Finkelstein2 Szymon Rusinkiewicz2 Anthony Santella1

1Department of Computer Science & Center for Cognitive Science 2Department of Computer Science
Rutgers University Princeton University

Abstract

In this paper, we describe a non-photorealistic rendering system that
conveys shape using lines. We go beyond contours and creases by
developing a new type of line to draw: thesuggestive contour. Sug-
gestive contours are lines drawn on clearly visible parts of the sur-
face, where a true contour would first appear with a minimal change
in viewpoint. We provide two methods for calculating suggestive
contours, including an algorithm that finds the zero crossings of the
radial curvature. We show that suggestive contours can be drawn
consistently with true contours, because they anticipate and extend
them. We present a variety of results, arguing that these images
convey shape more effectively than contour alone.

Keywords: non-photorealistic rendering, contours, silhouettes

1 Introduction

Our interpretation of natural imagery draws upon a wealth of vi-
sual cues, including contours,1 texture, shading, shadow, and many
others. Since each individual cue can be noisy, ambiguous or even
misleading, our visual system integrates all the information it re-
ceives to obtain a consistent explanation of the scene.

When artists design imagery to portray a scene, they do not just
render visual cues veridically. Instead, they select which visual cues
to portray and adapt the information each cue carries. Such imagery
departs dramatically from natural scenes, but nevertheless conveys
visual information effectively, because viewers’ perceptual infer-
ences still work flexibly to arrive at a consistent interpretation.

In this paper, we suggest that lines in line-drawings can convey
information about shape in this indirect way, and develop tools for
realizing such lines automatically in non-photorealistic rendering
(NPR). We start from the observation that many lines in natural and
artistic imagery come fromcontours, where a surface turns away
from the viewer and becomes invisible. As in the rendering at left
in Figure 1, contours can be quite limited in the information they
convey about shape on their own. But the visual system is readily
capable of relaxing the natural interpretation of lines as contours;
instead, it can read lines merely as features where a surface bends
sharply away from the viewer, yet remains visible—as features that
are almost contours, that become contours in nearby views. We
call thesesuggestive contours. When we draw suggestive contours
alongside contours, as in the rendering at right in Figure 1, we exag-
gerate the shape information provided by contours to make a sparse
line-drawing easier to understand. Figure 1 suggests how the two

Figure 1: An example showing the expressiveness added by sugges-
tive contours. The left image is drawn using contours alone, while
the right image uses both contours and suggestive contours.

kinds of lines together convey an object’s shape consistently and
precisely.

In this paper, we describe new NPR techniques based on sugges-
tive contours. Our system produces still frames, such as those in
Figure 1, which combine contours with a selection of those sugges-
tive contours that are stable, given small perturbations of the view-
point or surface. In introducing, characterizing and implementing
suggestive contours, we make the following contributions:

• We offer several intuitive characterizations of lines that can
augment true contours to help convey shape.

• We provide mathematical definitions corresponding to each
of these intuitive characterizations, and show that these defi-
nitions are equivalent.

• We describe the mathematical relationship between sugges-
tive contours and contours, showing that suggestive contours,
despite being drawn on clearly visible parts of the surface, in-
tegrate with true contours in a seamless and consistent way.

• We provide two algorithms (one in object space and one in
image space) for finding and rendering suggestive contours.

• We show imagery created by our implementation, demonstrat-
ing that suggestive contours complement contours in convey-
ing shape effectively.

1.1 Related work

Lines are the scaffold of non-photorealistic rendering of 3D shape;
and contours, which offer perhaps the strongest shape cue for
smooth objects [Koenderink 1984], make great lines [Gooch et al.
1999; Hertzmann and Zorin 2000; Kalnins et al. 2002; Markosian
et al. 1997; Raskar 2001; Winkenbach and Salesin 1994]. In many
cases, however, contours alone cannot convey salient and important
aspects of a rendered object, and additional lines are needed.

Before this work, all other lines drawn from general 3D shapes
have been features fixed on the surface. Creases are the most fre-
quent example [Kalnins et al. 2002; Markosian et al. 1997; Raskar
2001; Saito and Takahashi 1990; Winkenbach and Salesin 1994];
this can yield a pronounced improvement, but only when creases
are conspicuous features of an object’s shape (as for a cube, for ex-
ample). On smooth surfaces, ridges and valleys, also called crest

1There is significant variability in terminology—these are often called
silhouettes [Markosian et al. 1997; Hertzmann and Zorin 2000].



In SIGGRAPH 2003

contour
(2D)

contour
generator
(3D)

ending
contour

x

y

contour
generator

ending
contour

from camera

x

y

(a) (b)

Figure 2: The contour generator is the set of points on the sur-
face whose normal vector is perpendicular to the viewing direction.
(a) When projected into the image, its visible portions are called
the contour. (b) A topographic map of the surface in (a) with the
contour generator shown in green. The portion that projects to the
contour is drawn solid.

lines, provide features much like creases, and can help convey
the structure and complexity of an object [Interrante et al. 1995].
Ridges and valleys, however, lack the view-dependent nature that
hand-drawn pictures possess. Consider a drawing of a face. In pro-
file, an artist would indeed draw a line along the ridge of the nose
(as in Figure 1). However, for a frontal view the artist would instead
draw lines on one or both sides of the nose (as in the top right of
Figure 9).

Whelan [2001] has proposed view-dependent lines for rendering
terrain, called formulated silhouettes. Formulated silhouettes are
determined from those regions that become occluded in a single al-
ternative view where the camera is lowered by a prescribed amount.
This represents a related approach to ours in so far as these lines ap-
proximate some fraction of the suggestive contours of terrain.

Because we propose image-space as well as object-space algo-
rithms for computing suggestive contours, our work compares with
previous image manipulations that find lines in real images. In
particular, Pearson and Robinson [1985] and Iverson and Zucker
[1995] extract linear features along the darkest parts of the image
(valleys in the image). Our image-space algorithm takes a broadly
similar form (though of course without the robustness required for
real images), and thus our theoretical arguments offer a new per-
spective on these techniques.

1.2 Background: Contours

It is obvious what contours are in an image, but defining suggestive
contours requires an understanding of contours on objects. This
section draws in part on Cipolla and Giblin [2000] to summarize
the geometry of contour formation, and the important surface prop-
erties, such as curvature, that contours reflect.

Consider a view of a smooth and closed surfaceS from a per-
spective camera centered atc. Thecontour generatoris defined as
the set of points that lie on this surface and satisfy:

n(p) ·v(p) = 0 (1)

wherep ∈ S is a point on the surface,n(p) is the unit surface nor-
mal atp, andv is the view vector:v(p) = c−p. From the typical
(generic) viewpoint, the contour generator consists of a set of dis-
connected loops on the surface. Thecontourconsists of the visible
portions of these curves, projected into the image plane. Wherever
the contour generator is viewed from one of its tangent directions,
the contour abruptly stops—this is anending contour. Figure 2(a)
illustrates contour generators, contours, and ending contours. A top
view of this surface appears in (b), with the contour generators from
(a) portrayed directly on the surface.

When working with polyhedra, it is easy to compute the loca-
tions of contours. The contour generator is the set of polyhedral

n
v

p
w

tangent plane

radial curve

n

p
w

radial plane

(a) (b)

Figure 3: (a) The view vectorv is projected onto the tangent plane
to obtainw. (b) The radial plane is formed byp, n andw and slices
the surface along the radial curve—the curvature of which isκr(p).

edges that join a polygon facing the camera with one facing away
from it [Appel 1967]. This strategy detects sign changes inn · v.
However, with smooth surfaces, we must solve (1) over the entire
surface [Hertzmann and Zorin 2000].

In characterizing suggestive contours, we will also use the no-
tion of thecurvatureof a curve. The curvatureκ(p) at a pointp on
a curve is the reciprocal of the radius of the circle that best approx-
imates the curve atp [Hilbert and Cohn-Vossen 1932; do Carmo
1976]. Smaller curvature values correspond to larger circles; a line
has curvature zero. The sign of the curvature requires an orientation
to be specified (using a normal vector). Our convention is that when
the circle is beneath the curve (i.e. the normal vector points away
from the center of the circle), the curvature is positive: a convexity.2

Concave parts have negative curvature. Zero curvature corresponds
either to an inflection point or a line.

The curvature of the surfaceS at a pointp is measured along a
chosen curve that sits on the surface and passes throughp. Com-
monly, this curve is obtained by intersecting the surface with the
plane that containsp, the unit surface normaln, and a specific di-
rectiond which lies in the tangent plane ofSatp. This construction
yields thenormal curvature, which varies smoothly with the direc-
tion, and ranges between the principal curvaturesκ1(p) andκ2(p),
which are realized in their respective principal curvature directions
[do Carmo 1976]. Of particular relevance in this work is theradial
curvatureκr(p) [Koenderink 1984], which is the normal curvature
of the surface in the direction ofw defined as the (unnormalized)
projection of the view vectorv onto the tangent plane atp. See Fig-
ure 3. We are extending Koenderink’s definition—κr was originally
defined only along the contour generator, wherev already sits in the
tangent plane (so thatw = v). The radial curvature remains unde-
fined whereverv andn are parallel (asw = 0), but these surface
locations are not of concern in this work.

2 Suggestive contours

Informally, suggestive contours are curves along which the radial
curvature is zero and where the surface bends away from the viewer
(as opposed to bending towards them). Equivalently, they are those
locations at which the surface isalmostin contour from the origi-
nal viewpoint—locations at which the dot product in (1) is a pos-
itive local minimum rather than a zero. They also correspond to
true contours in relatively nearby viewpoints. In this section, we
define suggestive contours formally in terms of asuggestive con-
tour generator, which sits on the surface. Figure 4 illustrates this.
Figure 4(a) overlays the suggestive contours drawn in blue on the
image of Figure 2(a), while Figure 4(b) presents the suggestive con-
tour generator in a topographic view; the portion that projects to the
suggestive contour is drawn solid.

2While this is the opposite convention from do Carmo [1976], it corre-
sponds to outward-pointing surface normals.



In SIGGRAPH 2003

contour
suggestive
contour
generator

r = 0κ

suggestive
contour

x

y
from camera

x

y

(a) (b)

Figure 4: (a) Suggestive contours (shown in blue) extend the actual
contours of the surface (shown in green). (b) A topographic view
showing how the suggestive contour generators cross contours at
the ending contours. The portion of the suggestive contour genera-
tor that projects to the suggestive contour is drawn solid.

The situation illustrated in Figure 5 helps to motivate our defi-
nitions. In this case, a viewpoint atc sees a contour atq, and in
a nearby viewc′ the contour has “slid” along the surface, toq′.
Pointp is different, however. This point is a contour when viewed
from c′, but in no other viewpoint closer toc. Rather than sliding
along the surface as the camera position varies betweenc andc′,
it suddenly appears. When viewed fromc, p makes a suggestive
contour, whileq′ does not. Any definition of suggestive contour
generators must pick out the location ofp in Figure 5 from among
all the points on the surface.

In the remainder of this section, we offer a primary definition
of suggestive contour generators, two equivalent definitions, and
some further descriptive results. The context for all three definitions
comes from Section 1.2: the surfaceS is viewed from a pointc.
Defined at every pointp ∈ S is the unit surface normaln(p), the
view vectorv(p) = c−p, andw(p) which is the projection ofv(p)
onto the tangent plane atp. We exclude from this discussion all
locations wheren andv are parallel (wherew = 0), as the radial
plane is not defined there. When we define the suggestive contour
generator, we are defining the suggestive contour generator ofS
from the viewpointc.

2.1 Definition: Zeros of radial curvature

Recall that the radial curvature is measured along a curve in the
radial plane, as diagrammed in Figure 3(b). Suggestive contours
are points of inflection on these curves when viewed from the con-
vex side, along which a contour will eventually first appear. See
Figure 6(a). These points of inflection occur where the radial cur-
vature changes sign, and the radial curvature is increasing towards
the camera. Thus we have:

Definition I: The suggestive contour generator is the set
of points on the surface at which its radial curvatureκr
is 0, and the directional derivative ofκr in the direction
of w is positive:

Dwκr > 0 (2)

Here, the directional derivativeDwκr is defined as the differential
[do Carmo 1976] ofκr(p) applied tow, or dκr (w).

Returning to the situation in Figure 5, we see there are actually
two inflection points on the curve:p andr . Of these, onlyp satisfies
(2) and hence is part of the suggestive contour generator.

The solution ofκr = 0 is a set of closed loops on the surface
(from a generic viewpoint), just as the contours are. We see the por-
tions of these loops as dictated by (2) drawn in blue in Figure 4(b);
the view vector is tangent to those locations where(2) cuts these
loops. Furthermore, we see that contours and suggestive contours
meet at the ending contours. This is because the radial curvature at
ending contours is zero [Koenderink 1984]. In fact, Hertzmann and
Zorin [2000] solveκr = 0 (which they call the cusp function) along
the contour generator to locate the points of ending contour. This
leads to renderings of contours with accurate visibility.

main view
c

nearby view
c'

p

q'

r

q

Figure 5: A situation showing both contours (q) and suggestive
contours (p), as seen by the main viewpointc. As the viewpoint
moves toc′, a contour suddenly appears atp, while the contour
atq′ slides along the surface fromq.

2.2 Equivalent definitions

2.2.1 “Almost contours”: minima of n·v
Our second definition of suggestive contours is those locations at
which the surface is almost a contour.3 At these locationsn ·v does
not reach zero, but is a local minimum alongw. Thus we have:

Definition II: The suggestive contour generator is the
set of minima ofn ·v in the direction ofw.

Equivalence of I and II: We note that local minima ofn · v in
the direction ofw correspond to zeros of the directional derivative
of n ·v in the direction ofw where the second directional derivative
in w is positive. Specifically:

Dw (n ·v) = 0, and (3)

Dw (Dw (n ·v)) > 0 (4)

In rewriting (3) as:

Dw (n ·v) = Dwn ·v+n ·Dwv

we note thatw can replacev in the first term, asDwn lies in the
tangent plane becausen maintains unit length. Also, it follows from
v = c−p for p ∈ S that derivatives ofv lie in the tangent plane; so
the second term is zero becauseDwv is perpendicular ton. So:

Dw (n ·v) = Dwn ·w = −II (w,w) = (w ·w)κr

shows thatDw (n ·v) is by definition the (negated) second funda-
mental form−II [do Carmo 1976] which is a positive scaling of
the radial curvatureκr , and has the same zeros asκr . Computing
Dw

(
(w ·w)κr

)
at κr = 0 shows the equivalence of (2) and (4).

2.2.2 Contours in nearby viewpoints

Recall thatq′ in Figure 5 is not a suggestive contour because it
slid along the surface from the contourq as the viewpoint changed.
However,q′ is still a contour in a nearby viewpoint. This indi-
cates that our informal definition of suggestive contours as simply
those points that are contours in nearby views is incomplete. We re-
fine this definition of suggestive contours to be those points that are
contours in “nearby” viewpoints, but do not have “corresponding”
contours in any closer views.

A measure of distance to nearby viewpoints as well as the corre-
spondence induced by changing the viewpoint are defined in terms
of the radial plane—see Figure 3(b). Theradial distanceat p from
the main viewpointc to an alternative viewc′ is the angle formed
at p by the pointsc, p and the projection ofc′ onto the radial plane

3Koenderink uses the termalmost contourin passing when describing
the geometry of a specific shape: [Koenderink 1990], p. 304.



In SIGGRAPH 2003

p

r > 0:κ
convex

r < 0:κ
concave

n

r = 0:κ

inflection

v

p

n

contour

rejectedsuggestive
contour

occluded

cθ

(a) (b)

Figure 6: A portion of a surface around the pointp, as seen in the
radial plane. (a) A suggestive contour appears at the inflection point
on the radial curve. (b) If the location of the camera is in the dark
blue region, the surface will have a suggestive contour atp.

of c. Similarly, correspondence between contours across infinitesi-
mal changes in view is defined in terms of differential motion along
the surface in the radial plane. (This differs from correspondences
using epipolar geometry, used when estimating shape from contours
[Cipolla and Giblin 2000].) These preliminaries give us:

Definition III: The suggestive contour generator is the
set of points on the contour generator of a nearby view-
point (of radial distance less than 90 degrees) that are
not in radial correspondence with points on the contour
generators of any (radially) closer viewpoint.

Figure 6(a) motivates the relationship between definitionsII
and III . Point p has the surface normal that is a local minimum
of n · v, so it would be a suggestive contour by definitionII . As the
viewpoint is moved to the left, eventually real contours begin to ap-
pear on the surface. They appear when the camera moves below the
tangent plane (i.e. in Figure 6(b), moves from the blue to the green
region), and for no closer viewpoints. Additionally, points to the
left of p only produce contours at more distant viewpoints, and are
in radial correspondence withp in the sense of definitionIII .

Equivalence of II and III: In general, consider a pointp on the
surface, a designated camera viewc, and consider a radially nearby
view c′ that hasp in a contour generator. The nearby view must
be tangent to the surface atp. Supposep is a local minimum of
n · v in the direction ofw. Sincen is always closer to the camera
direction nearp, there cannot be a correspondence with a point on
a contour generator in a nearer view thanc′; so p is a suggestive
contour byIII . Conversely, ifp is not a local minimum ofn ·v, then
a point nearp and in radial correspondence withp will become a
contour beforep does. Sop is not a suggestive contour. It follows
that definitionsII andIII are equivalent.

2.3 Viewpoint dependence and stability

For the diagram in Figure 6(b), consider all possible viewpoint lo-
cations for whichp is visible—the points above its tangent plane
and outside the surface. Of these,p is a suggestive contour gener-
ator only for those shaded in (light or dark) blue. Below this are
areas where there can be a contour at or nearbyp, or p is occluded.

When viewed from the other side of the normal vector, nothing
is drawn atp due to (2). Applying this test is crucial, as the en-
tire closed loops of the solution toκr = 0 do not resemble what
an artist would draw. Figure 7(a) compares a rendering of the full
set of zeros ofκr to the suggestive contours. We note that (2) may
be applied to other lines on the surface, such as zeros of the mean
(H) or Gaussian curvature (K). Figure 7(b) shows the zeros of the
mean curvature both with and withoutDwH > 0 applied, and (c)
shows the analogous drawings for Gaussian curvature. Note, how-
ever, that the curves in (b) and (c) are attached to the surface; their

(a) (b) (c)

Figure 7: This figure demonstrates the importance of performing
the derivative test, even for different families of curves. On the top
are the entire solutions to (a)κr = 0, (b)H = 0 (the mean curvature),
and (c)K = 0 (the Gaussian curvature). Below, the appropriate
derivative test has been applied: (a)Dwκr > 0, (b) DwH > 0, and
(c) DwK > 0. In each case, the contours are also drawn.

view-dependence comes through their dependence of the deriva-
tive test onw. Drawing curvature zeros is a practiced visualization
tool—drawing the parabolic lines (the complete zeros of the Gaus-
sian curvature) is perhaps most common—but these efforts have not
connected with line-drawing more generally.4 Given the dramatic
effects of (2), this is hardly surprising.

As the viewpoint starts to approach a head-on view of a surface
location, the suggestive contour generators there can change drasti-
cally with small changes in the viewpoint (asw changes direction
quickly). At such a viewpoint, which would fall in the light blue
region in Figure 6(b), these parts of the suggestive contour gener-
ator are too unstable to give meaningful information about shape.
Therefore, we additionally enforce:

0 < θc < cos−1
(

n(p) ·v(p)
‖v(p)‖

)
(5)

This, in addition to the visibility ofp, define the suggestive con-
tours. This thresholdθc places a tighter bound (thanIII does) on
how nearby a contour-producing viewpoint can be: the radial dis-
tance of the viewpoints considered is at most 90−θc degrees.

2.4 Smoothness properties

For suggestive contours to be effective at conveying shape, they
have to merge seamlessly with genuine contour information from
the same viewpoint. In fact, suggestive contours are related to con-
tours in one of two ways. In the first case, the suggestive contour
anticipatesa new loop in the contour generator that is present only
in nearby views. The suggestive contour appears as a new line,
away from any contour, which portrays an unoccluded shape fea-
ture. See the top of Figure 8, which depicts contours in green and
suggestive contours in blue.

In the second case, an ending contour lengthens when seen from
a nearby view. Away from the ending contour, contour generator
points slide to their corresponding point on the contour generator in
the nearby view; the pointsq andq′ in Figure 5 are related this way.
But no radial correspondence is defined at the ending contours. So
here we get a suggestive contour thatextendsthe ending contour.
See the bottom of Figure 8.

4Famously, Felix Klein had the parabolic lines drawn on a copy of the
Apollo of Belvedere [Hilbert and Cohn-Vossen 1932; Koenderink 1990],
but was discouraged when the lines had no obvious aesthetic significance.



In SIGGRAPH 2003

contours in
original view c

contours in
nearby view c'

suggestive contours
and contours in c

anticipation

extension

Figure 8: We classify suggestive contours as eitheranticipation, re-
sulting from new contours that appear in nearby views, orextension,
resulting from contours that increase in length in nearby views.

In either case, as the viewpoint approaches a place where a con-
tour appears (or perhaps lengthens), the suggestive contour joins
smoothly with the contour—withG1 continuity. This is critical for
producing comprehensible images. The presence of suggestive con-
tours should not be distracting—they should look just like the true
contours (and in fact, it should be difficult to tell them apart, except
in the most obvious cases).

In establishing this smoothness property, we have to distinguish
the curves on the surface from their projections in the image. When
a suggestive contour generator crosses a contour generator at an
ending contour, the curves are not lined up on the surface (and in
fact, they can be perpendicular). Thus we focus on the projection
into the image of the tangent plane at the ending contour; this is a
line L. Anycurve on the surface that arrives at the ending contour
will do so in the tangent plane; its tangent vector will lie alongL
provided it doesn’t project to a point. The tangent to the suggestive
contour generator cannot project to a point, because that would im-
ply thatDwκr = 0 which contradicts (2). While the tangent to the
contour does project to a point, it still lines up withL [Cipolla and
Giblin 2000]. Finally, visible curves on the surface must approach
the ending contour alongL from the visible side, so the sugges-
tive contour cannot meet the contour at a cusp. It follows that the
suggestive contours line up with the contours withG1 continuity.

3 Computing suggestive contours

The extraction of suggestive contours can draw upon any of the
three definitions from Section 2. We expect most implementations
would useI or II . However, one can think of the algorithm for for-
mulated silhouettes [Whelan 2001] as a partial solution toIII .

This section describes two implemented systems that detect sug-
gestive contours working from triangular meshes. The first com-
putes them directly on the mesh by solvingI . The second renders
a diffusely shaded image which is processed to find the location of
the suggestive contours. Although it is only an approximate solu-
tion to II , we have found the behavior to be similar to that of the
other method. Furthermore, it so simple to implement that it is
valuable as a prototyping method.

3.1 Object-space algorithm

Our algorithm proceeds first by finding the solution toκr = 0 by
searching over the entire mesh. The suggestive contours are com-
puted by trimming this solution using (2) and (5). We next detect
contours on the mesh, and render all the lines with visibility as-
sessed using the method described by Kalnins et al. [2002].

Detection: Working directly on the polygon mesh, we follow
Hertzmann and Zorin [2000] in representing the suggestive contour
generator as a contiguous path consisting of line segments that cross
triangles. SolvingI , we find zero crossings ofκr exhaustively by

testing each triangle. While the exhaustive algorithm presented by
Hertzmann and Zorin [2000] is used to find zero crossings ofn · v,
it is suitable for finding zero crossings of any function sampled at
the vertices. This requires values ofκr at each vertex, which are
computed using the Euler formula for normal curvature from the
principal curvatures [do Carmo 1976]:

κr(p) = κ1(p)cos2φ +κ2(p)sin2φ (6)

which takesφ as the angle betweenw(p) and the principal curva-
ture direction corresponding toκ1.

The principal curvatures and directions are computed using es-
tablished techniques. First, the meshes are filtered using Taubin
smoothing [Taubin 1995a]. The curvature information is then es-
timated from this smoothed geometry using the T-algorithm pre-
sented by Taubin [1995b], with the modifications suggested by
Hameiri and Shimshoni [2002] (except for the inverse distance
weighting to accumulate information from mesh neighborhoods).

This yields a set of loops on the surface, which are subject to
(2) and (5). This requires computingDwκr , which proceeds first by
computing a constant gradient vector within in each triangle, and
then averaging these at the vertices (weighted by angles).

Filtering: There are additional difficulties caused by errors in the
curvature estimation. For instance, when the minimum principal
curvature is close to zero andw roughly looks down its correspond-
ing principal direction, spurious zero crossings are present that re-
sult from noise. Marr and Hildreth [1980] encountered an analo-
gous problem when detecting edges in images as zero crossings—
their solution checks that the derivative magnitude is large. Sim-
ilarly, we apply a small positive threshold toDwκr to avoid those
situations which are likely to produce spurious zero crossings:

td <
Dwκr

‖w‖ (7)

The thresholdstd andθc are most useful when they work con-
sistently for a range of objects and viewpoints. As a first step, we
normalizetd for object size. Then, we use the idea of hysteresis
thresholding [Canny 1986] to increase granularity. Our method pro-
ceeds first by filtering with (5) and (7). Then, segments that were
discarded are introduced again if they meet a second (less stringent)
set of thresholdst ′d andθ ′

c, and neighbor a segment that was not dis-
carded. This process is repeated until convergence. Finally, chains
of segments shorter thants are discarded.

3.2 Image-space algorithm

Instead of identifying locations on the mesh, it is possible to deter-
mine suggestive contours directly from a rendered image. There are
many possible approaches; one could, for instance, develop a suc-
cessful image-based analogue of our object-space algorithm, which
renders the polygon mesh colored byκr . Instead, we present a sim-
ple yet effective approximation toII .

Our algorithm proceeds as follows. The dot product in (1) is ap-
proximated for the entire image using the graphics hardware by ren-
dering a smoothly shaded image with a diffuse light source placed
at the camera origin. Pearson and Robinson [1985] motivate their
approach using this same configuration. In this rendered image,
we detect suggestive contours as steep valleys in intensity—this
finds stable minima ofn · v/‖v‖. (Actually, this will also find
contours, when the resolution is high enough and what’s behind
is bright.) The normalization in the lighting computation only ap-
proximatesn ·v—it is more accurate when the viewpoint is distant.
In addition, since one cannot determine the radial direction on the
mesh from the rendered image, we must find all valleys, not just
those minima in the radial direction.



In SIGGRAPH 2003

Figure 9: Comparison of image- and object-space algorithms for
computing suggestive contours. Left: contours (computed in ob-
ject space). Center: image-space algorithm. Right: object-space
algorithm.

There are many successful image processing algorithms for de-
tecting valleys [Iverson and Zucker 1995; Steger 1999]. However,
they are typically complex—the presence of noise in captured im-
ages is largely at fault for this. Given we are working with rendered
images that are also smooth (away from occlusion boundaries), we
can use a much simpler algorithm.

The basic idea is as follows. While a pixel in a valley is not nec-
essarily the minimum intensity value in a neighborhood, it will be
among a thin set of dark pixels that cuts across the neighborhood.
If the valley is steep, the neighborhood will also contain signifi-
cantly brighter pixels away from the valley; to implement (5), we
can require a sufficient intensity difference that the surface must be
turned meaningfully away. So to test pixeli with intensity pi our
algorithm collects all the pixel intensities within a radiusr centered
around it; across this circular window the greatest intensity ispmax.
We labeli a valley if two conditions are met: no more than a certain
percentagesof the pixels in this disk are strictly darker thanpi ; and
pmax− pi exceeds a fixed thresholdd. (To minimize the effects of
discretization, it is convenient to scalesasr varies by

(
1− 1

r

)
andd

by r.) As a final step, we remove small irregularities with a median
filter of radiusr.

4 Results

This section demonstrates results from our image- and object-space
algorithms, then briefly compares suggestive contours with other
effects. As seen in Figure 9, the image- and object-space algorithms
produce very similar results, but the object-space algorithm has the
advantage of generating continuous stroke paths on the surface. We
believe that the image-space method, in contrast, will not be able to
produce nicely-rendered strokes in a hand-drawn style. Because the
algorithm produces a discrete set of pixels, good image quality is
dependent on heavy post-processing, such as median filtering. Even
so, its avoidance of higher-order derivatives makes it much less sus-
ceptible to problems resulting from noise in the geometry—this ac-
counts for much of the differences in the locations or presence of
the suggestive contours on the hand. The object-space algorithm is
generally more efficient for larger images and medium-sized (50–
100K polygon) models, aside from the initial preprocessing to com-
pute curvatures (which takes several seconds for a medium-sized
polygon model).

Figure 10: Results of the object-space algorithm (Section 3.1).
Left: only contours; Right: both contours and suggestive contours.

Figure 11: Results of the image-space algorithm (Section 3.2).
Left: only contours; Right: both contours and suggestive contours.

Results of our object-space algorithm are shown in Figure 10, as
well as Figure 1 and the center of Figure 12. In each case, the left
image displays a drawing with only the contours. In these exam-
ples, the values ofθc ranged from 20 to 30 degrees andtd from 0.02
to 0.08; with ts = 2, θ ′

c = 0 andt ′d = 0 for all examples. Computing
the contours and suggestive contours on a 50K polygon mesh takes
0.15 seconds. (Available contour extraction techniques [Markosian
et al. 1997; Gooch et al. 1999; Hertzmann and Zorin 2000; Sander
et al. 2000] can certainly be adapted to improve our performance by
not checking every polygon.) Figure 11 and the right of Figure 12
show results of our image-space algorithm for finding suggestive
contours, using the parameter valuesr = 4.0, s= 0.2 andd = 0.25.
Computation lasted 0.4 seconds for a 640x480 image (the time is
dominated by the image operations for these examples).

The image-space rendering at right in Figure 12 uses a version
of the David at a substantially finer scale than the object-space ren-
dering in the center. The substantial noise in the higher-resolution
mesh posed a difficulty in applying (2) successfully; while the
strokes were placed reasonably, they were excessively fragmented.

In each of these examples, we selected viewpoints that produce
compelling results; not all viewpoints are created equal (as artists
already know). For the object-space algorithm,θc andtd were ad-
justed to cull only those lines that convey shape most effectively.

From renderings of contour alone, the limited shape information
that is available seems to present only an undifferentiated, smooth
and round relief. Suggestive contours enrich and differentiate the
conveyed shape. As in the lines at the head and shoulders of the
figures, suggestive contours define bulges and allow the viewer to
localize their convexity more precisely. As in the lines on the rump



In SIGGRAPH 2003

Figure 12: Left: only contours; Center: results of the object-space
algorithm for the David (80K polygons), drawn using thicker lines
(for stylistic reasons); Right: results of the image-space algorithm
for the David (500K polygons).

of the cow and hippo, or the torso and knees of the David, sugges-
tive contours highlight hollows and dimples that the viewer would
not otherwise have suspected. Suggestive contours convey small
shape features as well as large ones: in the eyes or toes of the fig-
ures, in the elephant’s trunk, in the texturing of the bunny (in Fig-
ure 13, right). These bumps and indentations show up in much the
same manner as an artist would depict them. Suggestive contours
can also convey folds in the surface when they are deep enough to
contain an inflection point, as are the wrinkles in the hand.

Comparisons to other strategies We now present comparisons
to two methods whose goal is also to draw lines that are visual
cues for shape. First, inspired by the work of Saito and Takahashi
[1990], we implemented an algorithm that finds discontinuities in
the depth buffer using a Canny edge detector [Canny 1986], and
renders these lines. Next, we implemented an algorithm for detect-
ing ridge and valley lines. We render just the valleys here; in our
experience, we have found that rendering both ridges and valleys
yields a cluttered result. (For many models, it is possible to locate
ridges and valleys as simply the creases in the model—edges along
which the dihedral angle is small. For more highly-tessellated mod-
els, however, this definition is inadequate, and we instead define
ridges and valleys as the local maxima or minima, respectively, of
the larger (in magnitude) principal curvature, in the corresponding
principal direction [Interrante et al. 1995; Lengagne et al. 1996].
In order to compute these robustly, we find the principal curvatures
and directions and perform non-maximum suppression and hystere-
sis thresholding operations similar to those used in the Canny edge
detector [Canny 1986]. In particular, for each vertex of the mesh we
locate the two neighboring vertices with the most positive and neg-
ative projections onto the first principal direction, and discard the

Figure 13: Comparison of several visual effects (two views of
each): Left: edge detection applied to the depth map to extract
depth discontinuities. Center: contours with valley lines computed
as local maxima of curvature. Right: contours with suggestive con-
tours computed using the object-space algorithm.

vertex unless its first principal curvature is more extreme than both.
Then, we connect all remaining vertices with chains of edges, keep-
ing only the chains for which each vertex has curvature above some
low threshold and at least one vertex has curvature above some high
threshold.)

It’s clear from Figure 13 that computing edges of the depth map
(left) conveys little more than contour does. In fact, we needed
to adjust the edge detector thresholds to be very sensitive to get
any additional lines at all. Valleys (center) sometimes highlight im-
portant shape features, as with the nose, eyes, ears and feet of the
bunny; unlike suggestive contours, these features are localized on
the surface, and as the view changes to wash out the relief of these
features, they start to look like surface markings. Elsewhere, as
at the haunches, the valleys can reduce to a distracting network,
evocative of terrain. Finally, the suggestive contours (right) convey
the shape effectively as in the earlier examples. But the many lines
portraying the texture of the bunny give the image a somewhat dis-
organized appearance, without highlighting structural features, for
example on the face, as explicitly as the valleys do.

5 Discussion and Conclusion

In this paper, we have explored drawings that portray objects’ sug-
gestive contours. We have characterized these suggestive contours
simultaneously in terms of the geometry of the object under the
current view, and in terms of the appearance of the object in nearby
views. On this characterization, suggestive contours are a way of
exaggerating a rendering, by using lines that are almost contours
to give added visual evidence of surface geometry. Our percep-
tual abilities make us sensitive to the reliable visual information in
such renderings, and they thus can portray richer and more detailed
shape information than true contours do alone. We have supported
this intuitive account of suggestive contours with a mathematical
formalization which substantiates the compatibility of true contours
and suggestive contours, and which enables us to describe a variety
of algorithms, including some familiar ones, that can extract and
stabilize suggestive contours.

Our initial progress with suggestive contours motivates more
substantial perceptual, aesthetic and computational investigations.
Perceptual research that establishes how people perceive drawings



In SIGGRAPH 2003

Figure 14: A rounded cube has no suggestive contours (left).
Ridges can mark its features (center). The effect on the right works
from zero crossings obtained by offsetting all of the curvatures, so
that the planar faces registered with negative curvature.

with suggestive contours, as well as a comparative study of sug-
gestive contours with lines that people actually draw, would help to
make precise the visual information that suggestive contours con-
vey. Perhaps most relevant is a study by Koenderink et al. [1996]
which compared the perception of shape given (external) silhou-
ettes, hand-made line drawings (which resemble the results here),
and shaded images. One conclusion is that the interpretation of the
line drawings was very close to that of shaded figures. In particular,
internal lines (which without context could easily be interpreted as
contours) do not necessarily cause people to believe that the surface
is perpendicular to the view direction. The fact that suggestive con-
tours fuse seamlessly with true contours does not mean that viewers
will perceive the shape incorrectly from them.

Aesthetic challenges include generalizing the account to apply
across levels of detail and across new classes of shapes. Level-of-
detail for object-space contour algorithms is an open problem, but
is particularly important for suggestive contours since they are so
rich. There are a number of established strategies for level of detail,
and comparison of the two renderings of the David in Figure 12 and
the head of David in Figure 1 leaves us optimistic about them.

Objects without concavities have no suggestive contours; the
rounded cube portrayed in Figure 14 is such a shape. Ridges can
be useful in situations like this, as seen in the center. Nevertheless,
variations on suggestive contours may still help depict their shape;
the image on the right was constructed by instead solvingκr = 1

2
(the particular value was chosen by hand).

Finally, on the computational side, greater robustness is required
in computing suggestive contours in object space. Animation also
presents a key challenge. The behavior of suggestive contours
through viewpoint changes is encouraging. Because suggestive
contours anticipate and extend true contours, they can eliminate
flickering for contours that would otherwise appear only briefly. On
the other hand, further methods to select and stabilize suggestive
contours are required for effective animation. In early experiments
we have found that while some suggestive contours are very sta-
ble, others move. We are optimistic that meaningful progress will
be possible, because the unstable lines seem to be the least impor-
tant for conveying shape, and tend to be caused by shallow surface
features and noise.

Acknowledgments

Thanks to Jordan Ellenberg, Stephen Greenfield, Spike Hughes,
Michael Kazhdan, Michael Kowalski, Michael Leyton, Peter Meer,
Ilan Shimshoni, Manish Singh, Matthew Stone, and especially Lee
Markosian, Rob Kalnins, and Philip Davidson who participated in
the discussion that led to this work and in its implementation.

This research was supported by the NSF (SGER 0227337) and
Intel Labs. The David model is from the archives of the Digital
Michelangelo Project, the bunny model is from the Stanford 3D
Scanning Repository, and the hand model is from Viewpoint.

References

APPEL, A. 1967. The notion of quantitative invisibility and the machine
rendering of solids.Proceedings of ACM National Meeting, 387–393.

CANNY, J. 1986. A computational approach to edge detection.IEEE PAMI
8, 6, 679–698.

CIPOLLA, R., AND GIBLIN , P. J. 2000. Visual Motion of Curves and
Surfaces. Cambridge Univ. Press.

DO CARMO, M. P. 1976. Differential Geoemtry of Curves and Surfaces.
Prentice-Hall.

GOOCH, B., SLOAN, P., GOOCH, A., SHIRLEY, P.,AND RIESENFELD, R.
1999. Interactive technical illustration. InProc. of the 1999 symposium
on Interactive 3D graphics, 31–38.

HAMEIRI , E., AND SHIMSHONI, I. 2002. Estimating the principal cur-
vatures and the darboux frame from real 3D range data. InInterna-
tional Symposium on 3D Data Processing Visualization and Transmis-
sion, 258–267.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In
SIGGRAPH 2000, 517–526.

HILBERT, D., AND COHN-VOSSEN, S. 1932.Geometry and the Imagina-
tion. Springer.

INTERRANTE, V., FUCHS, H., AND PIZER, S. 1995. Enhancing transpar-
ent skin surfaces with ridge and valley lines.IEEE Visualization 1995,
221–228.

IVERSON, L. A., AND ZUCKER, S. W. 1995. Logical/linear operators for
image curves.IEEE PAMI 17, 10, 982–996.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI , M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND

FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing strokes directly
on 3D models. InSIGGRAPH 2002, 755–762.

KOENDERINK, J. J.,VAN DOORN, A., CHRISTOU, C., AND LAPPIN, J.
1996. Shape constancy in pictorial relief.Perception 25, 155–164.

KOENDERINK, J. J. 1984. What does the occluding contour tell us about
solid shape?Perception 13, 321–330.

KOENDERINK, J. J. 1990.Solid Shape. MIT Press.

LENGAGNE, R., FUA, P., AND MONGA, O. 1996. Using crest lines to
guide surface reconstruction from stereo. InICPR ’96, 9–13.

MARKOSIAN, L., KOWALSKI , M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealis-
tic rendering. InSIGGRAPH 97, 415–420.

MARR, D., AND HILDRETH, E. 1980. Theory of edge detection.Proc.
Royal Soc. London B-207, 187–217.

PEARSON, D., AND ROBINSON, J. 1985. Visual communication at very
low data rates.Proc. IEEE 4(Apr.), 795–812.

RASKAR, R. 2001. Hardware support for non-photorealistic rendering. In
SIGGRAPH/Eurographics Workshop on Graphics Hardware, 41–46.

SAITO, T., AND TAKAHASHI , T. 1990. Comprehensible rendering of 3-D
shapes. InSIGGRAPH 90, 197–206.

SANDER, P. V., GU, X., GORTLER, S. J., HOPPE, H., AND SNYDER, J.
2000. Silhouette clipping. InSIGGRAPH 2000, 327–334.

STEGER, C. 1999. Subpixel-precise extraction of watersheds. InICCV ’99,
vol. II, 884–890.

TAUBIN , G. 1995. Curve and surface smoothing without shrinkage. In
ICCV ’95, 852–857.

TAUBIN , G. 1995. Estimating the tensor of curvature of a surface from a
polyhedral approximation. InICCV ’95, 902–907.

WHELAN, J. C. 2001. Beyond Factual to Formulated Silhouettes. PhD
thesis, University of Hull; supervised by M. Visvalingam.

WINKENBACH, G.,AND SALESIN, D. H. 1994. Computer-generated pen-
and-ink illustration. InSIGGRAPH 94, 91–100.


