
In traditional cel animation, lights and shad-
ows are symbolic in that they imply an artis-

tic interpretation of the characters and scene. For
example, lighting plays an important role in suggest-
ing a scene’s mood, while a character’s shadow shows
where the character is standing. Highlighting also
describes various aspects of the characters and objects

in the scene. The highlight exam-
ples shown in Figure 1 were made
with traditional cel animation tech-
niques. In Figure 1a, we see a high-
light on the swords, portraying that
the swords are flat and shiny like
plane glasses, and that they are so
sharp that the heroine might be
wounded in the next frame. The
highlight on the monster’s claws in
Figure 1b suggests that the claws
are very hard, and that they can
hurt someone easily. In Figure 1c
the highlight on the rear window of
a car shows that the window is
somewhat rounded, since the high-
light area is not a simple rectangle,
but a little bit deformed. This high-

light could be a kind of environment reflection or refrac-
tion, rather than the brightest area on the rear window.
In addition the highlight just shows the area where
something is reflected; we don’t see what is actually
reflected on the window.

As these examples show, a highlight for cel animation
must be a semantic notation rather than a part of
physics. The highlight shape is relatively simple but not
always rounded, suggesting stylistic, hand-drawn shape
variations. Moreover, for augmenting the presence of
highlighted objects in the animated scene, the highlight
animation feature is indispensable.

Hybrid use of 3D and hand-drawn characters and
scenes has achieved great success in the cel animation
industry. With hybrids, you would usually add cartoon
shade to 3D objects to fit into the traditional cel-
animated scene. As shown in Figure 2a, with a charac-
ter made of a 3D object, you could photorealistically
render the highlight using a standard local shading
model.1,2 Introducing a threshold of specular intensity
in the standard model gives the highlight a simpler con-
figuration, such as Figure 2b. However, neither of these
highlights is suited for cel animation (Figure 2a is too
realistic, and Figure 2b is too simple). As illustrated in
Figure 1, we want more cartoon-like highlights.

Therefore, in making cartoon-style highlights for 3D
objects, we must simultaneously meet the following
practical requirements:

� Shape. We should create a simply shaped highlight
with a clear boundary. It won’t always have a round-
ed shape, but can have rich variations such as cres-
cents and squares.

� Animation. We should make smooth and dynamic
highlight animation. We therefore need to describe

Nonphotorealistic Rendering

A novel highlight shader

depicts cartoon-style

highlights for 3D objects in

cel animation. This shader

creates cartoon-style

highlighting through simple

operations defined for the

highlight vector field.

Ken-ichi Anjyo and Katsuaki Hiramitsu
OLM Digital

Stylized Highlights
for Cartoon
Rendering and
Animation

54 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

1 Highlight effect in cel animation: Various highlights suggest different artistic meanings of objects in the scene.

(a) (b) (c)

temporary deformation of the highlights stylistically,
rather than photorealistically.

We also make the highlight animation as a keyframe
animation. In practice, a keyframing technique is indis-
pensable because it allows fine-tuning of stylistic ani-
mations. Besides, traditional cel animation is basically
keyframe animation, which is preferable even when
using 3D objects in the cel-animated scene.

A standard local shading model—restricted to round-
ed highlights such as in Figure 2b—could provide good
highlight animation using a conventional keyframing
technique. However, the standard shading model can’t
control the highlight shape. In addition, as mentioned
previously, the concept of a highlight in cel animation
includes uniform environment reflection (such as in Fig-
ure 1c). This suggests that we must make various high-
light shapes beyond rounded ones. On the other hand,
some conventional texture-mapping based approaches
might satisfy both of these requirements. For example,
environment mapping plus procedural shape animation
techniques could work well, but we would need addi-
tional methods to make the procedural method suited
for keyframing.

We propose a new highlight shader for the 3D objects
used in cel animation. Without using a texture-mapping
technique, our shader makes highlight shapes and ani-
mations in a cartoon style. Our shader makes an initial
highlight shape using the traditional Blinn’s specular
model. 2 (Figure 2b is an initial shape example.) Then
it interactively modifies the initial shape through geo-
metric, stylistic, and Boolean transformations for the
highlight until we get our final desired shape (such as
Figure 2c). Moreover, once these operations specify
highlight shapes for each keyframe, our shader auto-
matically generates the highlight animation. In other
words, our shader offers a new definition of highlight-
ing 3D objects for cel animation.

Main ideas
Blinn’s specular model is originally defined as Φs(p)

:= ks(N, H)n at point p on a surface S, where N is the sur-
face normal at p, H is the halfway vector of the light vec-
tor L and the vector V pointing to the eye in Figure 3.
We also assume N, L, and H are unit vectors. Φs(p)
includes the following parameters: the specular reflec-
tion coefficient ks and the exponent n controlling the

highlight’s sharpness. Our idea is to make the halfway
vector H more flexible for creating a variety of highlights
in 3D object cel animation. This means that we redefine
the halfway vector. Of course, once H is specified, it fol-
lows that L = 2(H, V) H − V. Therefore, our approach
can control a virtual light source for a highlight if V is
specified in advance.

We use Blinn’s model for making cel animation high-
lights, assuming that ks = 1 and n = 1. Then let us define
the highlight (area) Hε as follows:

Hε := {p ∈ S | Φs (p) > 1 − ε} (1)

where ε is supposed to be a small positive number (0 <
ε << 1.0). In the shading process, we give Hε a uniform
highlight color (usually white). In many practical cases
we move the highlight area on an object for better artis-
tic effect, even if it’s physically incorrect. Similarly, we
might also rotate the highlight area or make it larger in
a certain direction. Along with these geometric opera-
tions, we need to develop more operations for obtain-
ing rich highlight variations.

We thus construct a new framework for 3D model
highlights in cel animation by first defining a highlight
function as

Φ(p, N, H) := (N(p), H(p)) (2)

where N (= N(p)) means a unit surface normal vector at
p of S, and H (= H(p)) is a unit vector defined at p of S.

IEEE Computer Graphics and Applications 55

(a) (b) (c)

2 Highlight by shader: (a) standard 3D, (b) cartoon, and (c) our shader.

Eye
N

H

L

V

p

Light source

Surface S

3 Blinn’s highlight model.

Next, we suppose that H(p) is specified for each p of
S, that is, {H(p)}p ∈s is given as a vector field on S. Sim-
ilar to Equation 1 for Blinn’s model, we then define the
highlight area associated with Φ in Equation 2:

H* [ε] := {p ∈ S | Φ (p, N, H) > 1− ε} (3)

for a positive number ε (0 < ε << 1.0). If we take H as
the halfway vector field—that is, H = (L + V) / ||L + V||
as shown in Figure 3—we then have Φ = Φs and H*[ε] =
Hε. We then define a generalized highlight by the high-
light function Φ(p, N, H) and its associated vector field
{H(p)}p∈s for a surface S. Formally, we could arbitrar-
ily specify the vector field. However, in this article, we
only treat the vector field {H(p)}p∈s, which we obtain
from the halfway vector field through several opera-
tions. Though we originally perform these operations
on the vector field, they induce a variety of highlight
shapes. From a user’s point of view, these operations can
be understood as intuitive and easy-to-use modifications
on the highlight itself. The operations transform and
deform the highlight area, such as in translation, scaling,
or splitting. Then, our approach introduces Boolean
operations, such as sum and subtraction. Likewise, we
repeatedly and interactively modify the highlight area
through our shader’s GUI, until we achieve our desired
cartoon-style shape and animation.

In this framework, we refer to {H(p)}p∈s as a high-
light vector field on S; then H(p) as a highlight vector at
p. In particular, for the case where Φ = Φs and H*[ε] =
Hε, we refer to the halfway vector as the original high-

light vector, and Hεas the original highlight. Thus, effi-
cient highlighting depends on how we can construct a
good class of the highlight vector field.

Highlight vector field for cel animation
We describe various operations defined for the high-

light vector fields on a surface S that we will highlight.
We originally define each of these operations as a local
operation, because we perform each one for a single
patch. However, we can practically create a larger high-
light that traverses over neighboring patches using
these operations. In this section, we suppose that S is
coordinated with a single patch (u, v). Then direct oper-
ations for a highlight vector, which we call basic oper-
ations, are introduced (see Figure 4 and the movie file,
highlight1.avi, at http://www.computer.org/cga/
cg2003/g4toc.htm). The operations performed direct-
ly for the highlight areas are called post operations. You
can animate the generalized highlight using these
operations.

Local affine transform on a highlight vector field
A few geometric operations on the highlight vector

field can transform the highlight in Equation 3. These
basic operations are translation, rotation, and direc-
tional scaling, which we call local affine transform.

Translation. First we translate the highlight area in
Equation 3 to a slightly different position by modifying
a highlight vector on S. The modification means trans-
lation of a highlight vector in the following way. As noted
earlier, translating a highlight vector means moving the
virtual light source for the highlight area.

Let’s consider the tangent plane at p, which is
spanned by the linearly independent unit vectors du

and dv. For a highlight vector H at p and, given real
numbers α and β, we define translation t(H) of H as H′
:= H + αdu + βdv, t(H) := H′ / ||H′||. Then t translates
all the highlight vectors on S, so that the new highlight
vector field {t(H(p))} can translate the highlight area in
the specified direction (α, β). The top row in Figure 4
shows a translation example.

The two numbers α and β in t specify the direction in
which we can move the highlight area. However, they
don’t prescribe the distance between the new and old
highlight areas. Formally, we could define the transla-
tion operation t for arbitrarily large numbers α and β,
but in practice they should be relatively small because,
for large α and β (that is, |α| + |β| → ∞), t(H) is almost
parallel to the tangent plane and has no meaning.

Rotation. If we change the (u, v) coordinate system
of the tangent plane by rotation, then we can also rotate
H. The rotation r(H) for a highlight vector H simply
means rotating H, which is induced by the 2D rotation
of the (u, v) coordinate system.

Directional scaling. We could enlarge the high-
light area H*[ε] in Equation 3 by taking a larger ε. How-
ever, we should endow the highlight area with a
directional property, such as anisotropic reflection.

We define directional scaling s(H) for a given num-

Nonphotorealistic Rendering

56 July/August 2003

Translation

Directional scaling

Rotation

Split

Squaring

4 Basic operations. Top left shows an initial state. Orange arrows show
local affine transforms and yellow arrows indicate stylistic transforms.

ber δ(0 < δ ≤ 1.0) in the du direction as

H′′ := H − δ(H, du)du,
s(H) := H′′ / ||H′′|| (4)

We first consider replacing H with H + δ (N − H), so
that it gets closer to N in the sense that the inner prod-
uct of N and H + δ (N − H) approaches 1.0. Similar-
ly, to approximate N only in the du direction, we
replace H by

H′′= H + δ(N − H, du)du

= H + δ(N, du)du − δ(H, du)du

= H − δ(H, du)du

since (N, du) = 0 at p. Therefore, we have Equation 4.
Then we see that H′′ is almost equal to the original H, if
H is close to N. Similarly, if H is far from N, then H′′ is
closer to N. The highlight area would become larger if
δ(>0) is close to 1. Also H*[ε] includes Hε since ||H||2

= (H′′, du)2(δ − 1)2 + (1 − (H, du)2) is always less than
1.0 for δ(0 ≤ δ ≤ 1.0). This means that directional scal-
ing enlarges the original highlight area.

Though directional scaling is performed in the du

direction, we can also make directional scaling s in an
arbitrary direction, by combining rotation r. The mid-
dle row of Figure 4 illustrates these two operations.

Split and squaring
The local affine transform lets us endow the highlight

area with a more symbolic and artistic meaning, apart
from photoreality. In addition, we set up a few stylistic
operations on the highlight vector field to get a wider
variety of cartoon-style highlights. The additional basic
operations are split and squaring.

Split. The split operation is a slight modification of
the directional scaling operation. For given non-negative
numbers γ1, γ2, and a highlight vector H, we define split
operation spl(H) as

H∨ := H − γ1sgn[(H, du)]du − γ2sgn[(H, dv)]dv,
spl(H) := H∨ / || H∨ ||

where sgn[] is the signature function such that sgn[x]
= 1 if x = 0, and x / |x| otherwise.

Unlike directional scaling s(H), spl(H) can be away
from N in the sense that (spl(H(p)), N(p)) ≤ 1 − ε,
for p ∈ Hε. This means that p ∉ H*[ε]. This could
happen around the center of Hε, where H(p) is
almost equal to N(p). In Figure 4 the left column
shows a split operation example, where the split oper-
ation divides the highlight into the two parts along
the du axis, by setting γ1> 0 and γ2 = 0. In the movie
highlight1.avi, we divide a highlight into four small-
er highlights by split operation, with both γ1 and γ2

being positive.

Squaring. The squaring operation, which we
denote by sqr(H), makes a highlight area more square
shaped. We define this operation for a highlight vector
H as follows:

θ := min(cos−1 (H, du), cos−1 (H, dv)),
sqrnorm := sin (2θ)n,
H∧ := H − σ × sqrnorm((H, du)du + (H, dv)dv),
sqr(H) := H∧ / || H∧||

where integer n and positive number σ(0.0 ≤ σ ≤ 1.0)
are given. The highlight area would then be square
shaped along the du- and dv-axis. With a rotation oper-
ation, we can get the highlight area square shaped in a
desired direction. With a larger n, the area becomes
more sharpened, whereas σ prescribes the magnitude
of the squared area. The bottom row in Figure 4 shows
a squaring operation example.

Post operations
By repeated use of the basic operations, we can create

various highlight shapes. In some cases, we further need
post operations directly performed for highlight areas—
rather than for highlight vectors. Here we briefly men-
tion a few typical post operations.

For example, in making a crescent highlight, the
Boolean operations such as sum and subtraction among
highlight areas would be more useful than the basic
operations. To make this possible, we define the Boolean
operations for the highlight areas as follows. Let G and
H be highlight areas on S. This means that we have the
associated highlight vector fields g(p) and h(p) such
that G := {p ∈ S | Φ(p, N, g) > 1 − ε} and H :={ p ∈ S

| Φ(p, N, h) > 1 − η}, where ε and η are properly spec-
ified (0 < ε, η << 1.0).

Both ε and η can be given different values. Moreover,
we can easily define the post operations of sum (G ∪ H)
or subtraction (G \ H) through simple calculation of the
highlight function Φ. This leads us to the wider high-
light variations. These operations have intuitive mean-
ings so that they are easy to use in designing a highlight
shape. We will demonstrate a practical example creat-
ed with the post operations in the “Results and discus-
sion” section.

If we find an unnecessary part of a highlight, we
should eliminate it with a post operation. For this pur-
pose, we’ve added the off-specular operation to our
shader. We also provide a few additional post operations
for practical use. In this article, however, we don’t
explain these auxiliary operations to keep the focus on
the main features of our shader.

Making highlight animation
All the operations explained in this article are imple-

mented and integrated in our highlight shader. To ani-

IEEE Computer Graphics and Applications 57

The simplicity of our shader’s algorithms

allows for interactive rate parameter

setting in highlight shape design at each

keyframe.

mate a generalized highlight, we employ the standard
keyframing technique, which linearly interpolates the
parameter values of the operations in our shader. Then
keyframing the parameters occurs only for the patches
on which the original highlight should be modified. The
simplicity of our shader’s algorithms allows for interac-
tive rate parameter setting in highlight shape design at
each keyframe.

Except for camera or light control for the whole
scene we want to animate, we adopt the linear inter-
polation technique for highlight animation, because of
its easy implementation and fast processing. We might
explore alternative interpolation methods; however,
our approach works well with the simple interpolation
technique.

Results and discussion
The prototype system of our

highlight shader is currently a
series of plug-ins for Alias|Wave-
front’s Maya on a 600-MHz Pen-
tium III PC with 1,024 Mbytes of
main memory. The prototype sys-
tem lets us make cartoon-shaded
animation using 3D models along
with stylized highlights.

Figure 5 shows a typical example
made with our shader. The car
model in this example consists of
about 30 patches. We used a stan-
dard shader to make the car image
in Figure 5a, where the highlight
area dominates the front window.
No matter how we chose ε for Hε in
Equation 1, the highlight area
would cover almost all the front
window, since it was almost flat. On
the other hand, as shown in Figure
5b, we successfully rendered the car
with our shader using rotation,
directional scaling, and split. The
highlight area indicates the win-
dow’s material in a much more
impressive way than in Figure 5a.
Figure 6 illustrates how we can
apply post operations for making
the highlight variations. We applied
a few Boolean operations to make
the highlights on the spaceship in
Figure 6a. Figure 6b demonstrates
how we applied the sum and sub-
traction operations to get the high-
lights on the spaceship wing.

In the following experimental
results and keyframe animations
created with our shader we typi-
cally design the highlight at a
keyframe after fixing the camera
path for the animation.

In the movie Experimental Ani-
mation 1 (see the movie file high-
light2.avi at http://www.computer.
org/cga/cg2003/g4toc.htm), the

car in Figure 5 rotates with a fixed directional light
source. The movie demonstrates that our shader
achieves smooth and natural highlight change. We
indicated all of the keyframes in the movie to illustrate
how we created this highlight animation with our
shader. In Experimental Animation 2 (see the movie
file highlight3.avi), the car is at a fixed position, where-
as a directional light source is moving around the car.
This shows that we successfully created a dynamic
change in a cartoon-style highlight.

The next two animation examples demonstrate how
our shader works in more practical situations. Of
course, in some cases, existing approaches would also
work well. For example, the flow animation of the
highlight stripe on the sword in Figure 1a would be

Nonphotorealistic Rendering

58 July/August 2003

5 Typical high-
light example
using (a) con-
ventional car-
toon shader and
(b) our shader.

(a) (b)

(a) (b)

6 Stylized
highlight with
post operations:
(a) spaceship
and (b) Boolean
operations.

7 3D models used in the first animation example: (a) 3D character and scene, (b) geometry of
the 3D character, and (c) texture on the character.

(b)

(a) (c)

relatively easy to make with the ramp texture tech-
nique in Maya.

Figure 7a shows the character and the scene used for
the first animation piece (see the movie file high-
light4.avi), where we semantically animated all the
highlights. For instance, our shader successfully syn-
chronized the highlights on the character and the win-
dows. We made this character from 13 nonuniform
rational B-spline patches and rendered it at about
33,000 polygons. Figure 7b presents the wireframe
model of this character’s shell; Figure 7c shows its 3D-
shaded image. The highlights on this shell were smooth-
ly deformed, because of smooth transition among the
highlight vector fields through the basic operations.

We have not yet considered a highlight that travers-
es neighboring patches, since we originally defined
operations in our shader for a single patch. However,
with our final animation example, we show that we can
eliminate this restriction in practice.

In the final example (see the movie file high-

light5.avi), we animated several highlights on a fast-
moving car. Figure 8 shows a frame taken from this
animation, where we see a long highlight on the side
body of the car. The long highlight actually traversed
different patches of the side body. Figure 9 explains
how to make a keyframe for the long highlight. First,
we put the initial highlight on each patch (this frame
in the figure shows where the patches are distin-
guished to each other by color). We made each high-
light using the original highlight vector field. Using
directional scaling and translation operations repeat-
edly, we successfully made the final long highlight. As
Figure 10 demonstrates, the movie clearly describes
the dynamic change of highlight. The resultant high-
light shapes were so various that some were rather
complicated according to the car model’s surface
geometry. This demonstrates our approach’s advan-
tage: we can naturally coordinate generated highlights
with the surface parameters. We only used 15
keyframes to make the movie, whereas we rendered

IEEE Computer Graphics and Applications 59

8 Frame from our final animation example.

Initial highlight Translation Directional scaling

Directional scaling Adding parts Final

9 Making long highlight traversing patches.

10 Dynamic highlighting in our final animation example.

180 frames in total. These results suggest that our
approach can create various cartoon-look highlights
for 3D animation using few keyframes.

Future work
We have demonstrated an approach for rendering

and animating stylized highlights on 3D objects used
in cel animation. This approach starts with the initial
highlight design, based on the halfway vectors in
Blinn’s specular model. Then various highlight shape
and animation are created through several function-
al operations for the highlight vector field. We are cur-
rently making our approach usable in real time, by
exploiting the power of graphics hardware. We are
also generalizing the vector-field-based approach, so
that we can arbitrarily specify the initial highlight

shape independently of the halfway vector field. We
believe that the generalized framework should lead
us to a unified approach for efficient cartoon shading
and shadowing. �

Acknowledgments
We thank the Pikachu Project for providing the char-

acter models used in this article, and Katsumi Takao
and Shinji Morohashi for their help in creating the
images in Figure 1. We also thank Yoshinori Dobashi of
Hokkaido University for discussions during the early
development of this work, and the anonymous review-
ers for their significant help and many constructive
comments. Finally, we are very grateful to Toshiaki
Okuno for his continuing support and encouragement,
which made this work all possible.

Nonphotorealistic Rendering

60 July/August 2003

Related work
Early milestones of the hybrid use of 3D and hand-

drawn characters include some of Disney’s animated
movies, such as The Great Mouse Detective (1986) or
Beauty and the Beast (1991). Following these, a variety of
cel-animated films have been made possible by the rapid
progress of 3D computer graphics technology (see Anjyo
et al. for instance1).

One of the recent successes of 3D computer graphics
techniques applied to the cel animation industry is
cartoon shaders. The shaders render 3D characters and
objects in a cartoon style. For example, Softimage’s Toon
Shaders2 contributed to famous films such as The Princess
Mononoke (1997) by Studio Ghibli and The Prince of Egypt
(1999) and The Road to El Dorado (2000) by Universal
Studios/DreamWorks. Another successful method is
applying complex textures on 3D objects to hand-drawn
characters in cel animation.3 With this method, animators
can combine complex textures and hand-drawn artwork.
The view-dependent geometry also provides a useful 3D
model that successfully inherits 2D artistic expressions by
allowing view-dependent distortion.4 A semiautomatic
method for generating shadow mattes uses 3D inflation
models for hand-drawn characters.5 This method avoids
the hand-drawn task in shadow matting, while enriching
complex shadow variations. Unfortunately these
techniques don’t address the practical requirements for
highlighting.

Lake et al. propose an efficient interactive rendering
system with the several real-time algorithms that emulate
various cartoon styles.6 These real-time methods include
a technique that can deal with cartoon highlighting.
Since this technique is essentially based on a local
shading model, it’s hard to control highlight shape.
Other conventional approaches to making highlights
would be of use with projected textures, light maps, or
virtual light sources. In a projected texture approach, we
consider highlight as texture, and can easily make its
static variations. In making highlight animation, we
would make 2D animation in the texture parameter
space using a procedural technique. Similarly, a light
map approach would be effective for highlight shape,
but again this would require additional (mostly

procedural) operations in the light map space for
highlight animation. Keyframing might cause some
difficulties for both approaches. Alternatively, use of
virtual light sources for highlighting means
corresponding a virtual light source to each highlight
area. This method could work well, supposing that the
highlight shape is relatively simple. If the highlight shape
becomes complex, then we must complete the number
of virtual light sources, and they might become hard to
control in making the highlight animation.

Our approach starts with generalizing Blinn’s specular
model, so that the generalized model lets us easily make
various stylized highlights. We make the generalized
highlight directly on a surface in the sense that we perform
the highlight transformations mentioned in the text
introduction in the surface’s parametric space. This
distinguishes our approach from existing mapping-based
ones, such as projected textures or light maps. We achieve
the highlight transformations by intuitive, interactive, and
direct manipulation on the highlight area to get a desired
highlight shape. Moreover, we obtain the generalized
highlight animation as keyframe animation by
interpolating the parameters that prescribe those
transformations. This ensures the greater flexibility of our
approach over previous works.

References
1. K. Anjyo et al., “Digital Cel Animation in Japan,” Siggraph 2000

Conf. Abstracts and Applications, ACM Press, 2000, pp.115-117.
2. M. Arias, “Non-Photorealistic Rendering,” Softimage|XSI Power

Creators’ Guide, Aspects Corp., 2002, pp. 284-290.
3. W. Corrêa et al., “Texture Mapping for Cel Animation,” Proc. Sig-

graph 98, ACM Press, 1998, pp. 435-446.
4. P. Rademacher, “View-Dependent Geometry,” Proc. Siggraph 99,

ACM Press, 1999, pp. 439-446.
5. L. Petrovic et al., “Shadows for Cel Animation,” Proc. Siggraph

2000, ACM Press, 2000, pp. 511-516.
6. A. Lake et al., “Stylized Rendering Techniques For Scalable Real-

Time 3D Animation,” Proc. 1st Int’l Symp. Non-Photorealistic Ren-
dering (NPAR 00), ACM Press, 2000, pp. 13-20.

References
1. B.-T. Phong, “Illumination for Computer Generated Pic-

tures,” Comm. ACM, vol. 18, no. 6, 1975, pp. 311-317.
2. J.F. Blinn, “Models of Light Reflection for Computer Syn-

thesized Pictures,” Computer Graphics, vol. 11, no. 2, 1977,
pp. 192-198.

Ken-ichi Anjyo is technical direc-
tor of the R&D group of OLM Digital.
He is also a guest professor at the
Tokyo University of Technology. His
research interests include exploring
techniques that might someday clar-
ify the principles in our visual under-

standing of human behaviors, natural phenomena, and
nonphotorealistic imagery. Anjyo received a BS in mathe-
matics from Saitama University, an MS in mathematics
from Kyushu University, and a PhD in information engi-
neering from Nagoya University.

Katsuaki Hiramitsu was a soft-
ware engineer of the R&D group of
OLM Digital. He is now at OptGraph,
Tokyo, Japan. His research interests
include development of the nonpho-
torealistic rendering tools used in
production work, such as those used

for the Pokémon movies, and developing rendering algo-
rithms. Hiramitsu received a BS in mathematics from Meiji
University, Tokyo.

Readers may contact Ken-ichi Anjyo at OLM Digital, 1-
8-8 Wakabayashi Setagaya, Tokyo, 154-0023, Japan;
anjyo@olm.co.jp.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 61

January/February
Web Graphics

With the popularity of the Internet, we’re seeing a migration of tradition-
al applications to run on the Web environment and a growing demand
for more powerful Web-based applications. Fused by the increasing
availability and dramatic reduction in the cost of 3D graphics accelera-
tors, a new direction of research, called Web Graphics, is emerging. This
includes developing graphics applications as well as tools to support
these applications in the Web environment.

March/April
Graphics Applications for Grid Computing

Grid computing allows access to distributed computing resources with
the same ease as electrical power. In recent years, graphics application
tools that take advantage of distributed computing, or grid environ-
ments, have emerged. New methodologies and techniques that harness
resources for graphics applications are critical for the success of grid
environments.

May/June
Advances in Computer Graphics

This issue covers an array of advances in computer graphics such as
organic textures, lighting, and approximation of surfaces. Also, you’ll
find out about new developments in virtual reality, novel approaches in
visualization, and innovative CG applications. The range of topics
highlights the usefulness of computer graphics for everyone.

July/August
Nonphotorealistic Rendering

Nonphotorealistic rendering (NPR) investigates alternatives that lever-
age techniques developed over centuries by artists and illustrators to
depict the world. One goal of this research is to broaden the achievable
range of image styles and thereby embrace new applications. Additional-
ly, NPR has the potential to open a new line of attack on one of the
central problems of 3D computer graphics today: content creation.

September/October
Perceptual Multimodal Interfaces

This issue focuses on recent advances in methods, techniques, applica-
tions, and evaluations of multimodal interaction. Learn how researchers’
cross-disciplinary approaches helped develop multimodal interfaces
from interaction-centered prototypes to user-oriented and application-
tailored solutions. This issue also explores the notion of moving toward
transparent user interfaces.

November/December
3D Reconstruction and Visualization

Models based on 3D data will ultimately include everything associated
with the environment, such as trees, shrubs, lampposts, sidewalks,
streets, and so on. The main mode of exploration for this massive collec-
tion will be through interactive visualization. Ultimately, you should be
able to fly continuously from overviews of a large city to centimeter-size
details on the side of any building. Smoothly joining these different
scales may require integrating rendering techniques in new ways.

2003Editorial Calendar

http://computer.org/cga

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

