--- title: 剖析虚幻渲染体系(08)- Shader体系 date: 2024-02-04 21:44:10 excerpt: tags: rating: ⭐ --- # 前言 原文地址:https://www.cnblogs.com/timlly/p/15092257.html # FShader ```c++ class FShader { public: // 在编译触发之前修改编译环境参数, 可由子类覆盖. static void ModifyCompilationEnvironment(const FShaderPermutationParameters&, FShaderCompilerEnvironment&) {} // 是否需要编译指定的排列, 可由子类覆盖. static bool ShouldCompilePermutation(const FShaderPermutationParameters&) { return true; } // 检测编译结果是否有效, 可由子类覆盖. static bool ValidateCompiledResult(EShaderPlatform InPlatform, const FShaderParameterMap& InParameterMap, TArray& OutError) { return true; } // 取得RayTracingPayloadType static ERayTracingPayloadType GetRayTracingPayloadType(const int32 PermutationId) { return static_cast(0); } // 获取各类数据的Hash的接口. RENDERCORE_API const FSHAHash& GetHash() const; RENDERCORE_API const FSHAHash& GetVertexFactoryHash() const; RENDERCORE_API const FSHAHash& GetOutputHash() const; /** Returns an identifier suitable for deterministic sorting of shaders between sessions. */ uint32 GetSortKey() const { return SortKey; } // 保存并检测shader代码的编译结果. RENDERCORE_API void Finalize(const FShaderMapResourceCode* Code); // 数据获取接口. inline FShaderType* GetType(const FShaderMapPointerTable& InPointerTable) const { return Type.Get(InPointerTable.ShaderTypes); } inline FShaderType* GetType(const FPointerTableBase* InPointerTable) const { return Type.Get(InPointerTable); } inline FVertexFactoryType* GetVertexFactoryType(const FShaderMapPointerTable& InPointerTable) const { return VFType.Get(InPointerTable.VFTypes); } inline FVertexFactoryType* GetVertexFactoryType(const FPointerTableBase* InPointerTable) const { return VFType.Get(InPointerTable); } inline FShaderType* GetTypeUnfrozen() const { return Type.GetUnfrozen(); } inline int32 GetResourceIndex() const { checkSlow(ResourceIndex != INDEX_NONE); return ResourceIndex; } inline EShaderPlatform GetShaderPlatform() const { return Target.GetPlatform(); } inline EShaderFrequency GetFrequency() const { return Target.GetFrequency(); } inline const FShaderTarget GetTarget() const { return Target; } inline bool IsFrozen() const { return Type.IsFrozen(); } inline uint32 GetNumInstructions() const { return NumInstructions; } #if WITH_EDITORONLY_DATA inline uint32 GetNumTextureSamplers() const { return NumTextureSamplers; } inline uint32 GetCodeSize() const { return CodeSize; } inline void SetNumInstructions(uint32 Value) { NumInstructions = Value; } #else inline uint32 GetNumTextureSamplers() const { return 0u; } inline uint32 GetCodeSize() const { return 0u; } #endif // 尝试返回匹配指定类型的自动绑定的Uniform Buffer, 如果不存在则返回未绑定的. template FORCEINLINE_DEBUGGABLE const TShaderUniformBufferParameter& GetUniformBufferParameter() const { const FShaderUniformBufferParameter& FoundParameter = GetUniformBufferParameter(UniformBufferStructType::FTypeInfo::GetStructMetadata()); return static_cast&>(FoundParameter); } FORCEINLINE_DEBUGGABLE const FShaderUniformBufferParameter& GetUniformBufferParameter(const FShaderParametersMetadata* SearchStruct) const { const FHashedName SearchName = SearchStruct->GetShaderVariableHashedName(); return GetUniformBufferParameter(SearchName); } FORCEINLINE_DEBUGGABLE const FShaderUniformBufferParameter& GetUniformBufferParameter(const FHashedName SearchName) const { int32 FoundIndex = INDEX_NONE; TArrayView UniformBufferParameterStructsView(UniformBufferParameterStructs); for (int32 StructIndex = 0, Count = UniformBufferParameterStructsView.Num(); StructIndex < Count; StructIndex++) { if (UniformBufferParameterStructsView[StructIndex] == SearchName) { FoundIndex = StructIndex; break; } } if (FoundIndex != INDEX_NONE) { const FShaderUniformBufferParameter& FoundParameter = UniformBufferParameters[FoundIndex]; return FoundParameter; } else { // This can happen if the uniform buffer was not bound // There's no good way to distinguish not being bound due to temporary debugging / compiler optimizations or an actual code bug, // Hence failing silently instead of an error message static FShaderUniformBufferParameter UnboundParameter; return UnboundParameter; } } RENDERCORE_API const FShaderParametersMetadata* FindAutomaticallyBoundUniformBufferStruct(int32 BaseIndex) const; RENDERCORE_API void DumpDebugInfo(const FShaderMapPointerTable& InPtrTable); #if WITH_EDITOR RENDERCORE_API void SaveShaderStableKeys(const FShaderMapPointerTable& InPtrTable, EShaderPlatform TargetShaderPlatform, int32 PermutationId, const struct FStableShaderKeyAndValue& SaveKeyVal); #endif // WITH_EDITOR /** Returns the meta data for the root shader parameter struct. */ static inline const FShaderParametersMetadata* GetRootParametersMetadata() { return nullptr; } private: RENDERCORE_API void BuildParameterMapInfo(const TMap& ParameterMap); public: // 着色器参数绑定. LAYOUT_FIELD(FShaderParameterBindings, Bindings); // 着色器参数绑定的映射信息. LAYOUT_FIELD(FShaderParameterMapInfo, ParameterMapInfo); protected: LAYOUT_FIELD(TMemoryImageArray, UniformBufferParameterStructs); LAYOUT_FIELD(TMemoryImageArray, UniformBufferParameters); // 下面3个是编辑器参数. // 着色器的编译输出和结果参数映射的哈希值, 用于查找匹配的资源. LAYOUT_FIELD_EDITORONLY(FSHAHash, OutputHash); // 顶点工厂资源哈希值 LAYOUT_FIELD_EDITORONLY(FSHAHash, VFSourceHash); // Shader资源哈希值. LAYOUT_FIELD_EDITORONLY(FSHAHash, SourceHash); private: // 着色器类型. LAYOUT_FIELD(TIndexedPtr, Type); // 顶点工厂类型. LAYOUT_FIELD(TIndexedPtr, VFType); // 目标平台和着色频率(frequency). LAYOUT_FIELD(FShaderTarget, Target); // 在FShaderMapResource的shader索引. LAYOUT_FIELD(int32, ResourceIndex); // shader指令数. LAYOUT_FIELD(uint32, NumInstructions); /** Truncated version of OutputHash, intended for sorting. Not suitable for unique shader identification. */ LAYOUT_FIELD(uint32, SortKey); // 纹理采样器数量. LAYOUT_FIELD_EDITORONLY(uint32, NumTextureSamplers); // shader代码尺寸. LAYOUT_FIELD_EDITORONLY(uint32, CodeSize); }; ``` 以上可知,FShader存储着Shader关联的绑定参数、顶点工厂、编译后的各类资源等数据,并提供了编译器修改和检测接口,还有各类数据获取接口。 FShader实际上是个基础父类,它的子类有: - **FGlobalShader**:全局着色器,它的子类在内存中只有唯一的实例,常用于屏幕方块绘制、后处理等。相比父类FShader,增加了SetParameters设置视图统一缓冲的接口。FGlobalShader包含了后处理、光照、工具类、可视化、地形、虚拟纹理等方面的Shader代码,可以是VS、PS、CS,但CS必然是FGlobalShader的子类 - **FMaterialShader**:材质着色器,由FMaterialShaderType指定的材质引用的着色器,是材质蓝图在实例化后的一个shader子集。FMaterialShader主要包含了模型、专用Pass、体素化等方面的Shader代码,可以是VS、PS、GS等,但不会有CS。 ## Shader Parameter 位于`Engine\Source\Runtime\RenderCore\Public\ShaderParameters.h`。 - FShaderParameter:着色器的寄存器绑定参数, 它的类型可以是float1/2/3/4,数组等。 - FShaderResourceParameter:着色器资源绑定(纹理或采样器)。 - FRWShaderParameter:绑定了UAV或SRV资源的类型。 - FShaderUniformBufferParameter:着色器统一缓冲参数。 ## Uniform Buffer 位于`Engine\Source\Runtime\RHI\Public\RHIResources.h`。 UE的Uniform Buffer涉及了几个核心的概念,最底层的是RHI层的FRHIUniformBuffer,封装了各种图形API的统一缓冲区(也叫Constant Buffer)。 ```c++ class FRHIUniformBuffer : public FRHIResource { public: // 构造函数. FRHIUniformBuffer(const FRHIUniformBufferLayout& InLayout); // 引用计数操作. uint32 AddRef() const; uint32 Release() const; // 数据获取接口. uint32 GetSize() const; const FRHIUniformBufferLayout& GetLayout() const; bool IsGlobal() const; private: // RHI Uniform Buffer的布局. const FRHIUniformBufferLayout* Layout; // 缓冲区尺寸. uint32 LayoutConstantBufferSize; }; // 定义FRHIUniformBuffer的引用类型. typedef TRefCountPtr FUniformBufferRHIRef; // Engine\Source\Runtime\RenderCore\Public\ShaderParameterMacros.h // 引用了指定类型的FRHIUniformBuffer的实例资源. 注意是继承了FUniformBufferRHIRef. template class TUniformBufferRef : public FUniformBufferRHIRef { public: TUniformBufferRef(); // 根据给定的值创建Uniform Buffer, 并返回结构体引用. (模板) static TUniformBufferRef CreateUniformBufferImmediate(const TBufferStruct& Value, EUniformBufferUsage Usage, EUniformBufferValidation Validation = EUniformBufferValidation::ValidateResources); // 根据给定的值创建[局部]的Uniform Buffer, 并返回结构体引用. static FLocalUniformBuffer CreateLocalUniformBuffer(FRHICommandList& RHICmdList, const TBufferStruct& Value, EUniformBufferUsage Usage); // 立即刷新缓冲区数据到RHI. void UpdateUniformBufferImmediate(const TBufferStruct& Value); private: // 私有构造体, 只能给TUniformBuffer和TRDGUniformBuffer创建. TUniformBufferRef(FRHIUniformBuffer* InRHIRef); template friend class TUniformBuffer; friend class TRDGUniformBuffer; }; ``` 最后TUniformBuffer和TRDGUniformBuffer引用了FUniformBufferRHIRef。TUniformBuffer为`TUniformBufferRef UniformBufferRHI`成员变量;TRDGUniformBuffer为`TRefCountPtr UniformBufferRHI`。 ![[UE_Uniform.png]] ### 定义宏 - SHADER_PARAMETER_STRUCT_REF:引用着色器参数结构体(全局的才行) - SHADER_PARAMETER_STRUCT_INCLUDE:包含着色器参数结构体(局部或全局都行) # Vertex Factory 我们知道,在引擎中存在着静态网格、蒙皮骨骼、程序化网格以及地形等等类型的网格类型,而材质就是通过顶点工厂FVertexFactory来支持这些网格类型。实际上,顶点工厂要涉及各方面的数据和类型,包含但不限于: - 顶点着色器。顶点着色器的输入输出需要顶点工厂来表明数据的布局。 - 顶点工厂的参数和RHI资源。这些数据将从C++层传入到顶点着色器中进行处理。 - 顶点缓冲和顶点布局。通过顶点布局,我们可以自定义和扩展顶点缓冲的输入,从而实现定制化的Shader代码。 - 几何预处理。顶点缓冲、网格资源、材质参数等等都可以在真正渲染前预处理它们。 ![[UE_VertexFactory.png]] **顶点工厂在渲染层级中的关系。由图可知,顶点工厂是渲染线程的对象,横跨于CPU和GPU两端。** ```c++ // Engine\Source\Runtime\RHI\Public\RHI.h // 顶点元素. struct FVertexElement { uint8 StreamIndex; // 流索引 uint8 Offset; // 偏移 TEnumAsByte Type; // 类型 uint8 AttributeIndex;// 属性索引 uint16 Stride; // 步长 // 实例索引或顶点索引是否实例化的, 若是0, 则元素会对每个实例进行重复. uint16 bUseInstanceIndex; FVertexElement(); FVertexElement(uint8 InStreamIndex, ...); void operator=(const FVertexElement& Other); friend FArchive& operator<<(FArchive& Ar,FVertexElement& Element); FString ToString() const; void FromString(const FString& Src); void FromString(const FStringView& Src); }; // 顶点声明元素列表的类型. typedef TArray > FVertexDeclarationElementList; // Engine\Source\Runtime\RHI\Public\RHIResources.h // 顶点声明的RHI资源 class FRHIVertexDeclaration : public FRHIResource { public: virtual bool GetInitializer(FVertexDeclarationElementList& Init) { return false; } }; // 顶点缓冲区 class FRHIVertexBuffer : public FRHIResource { public: FRHIVertexBuffer(uint32 InSize,uint32 InUsage); uint32 GetSize() const; uint32 GetUsage() const; protected: FRHIVertexBuffer(); void Swap(FRHIVertexBuffer& Other); void ReleaseUnderlyingResource(); private: // 尺寸. uint32 Size; // 缓冲区标记, 如BUF_UnorderedAccess uint32 Usage; }; // Engine\Source\Runtime\RenderCore\Public\VertexFactory.h // 顶点输入流. struct FVertexInputStream { // 顶点流索引 uint32 StreamIndex : 4; // 在VertexBuffer的偏移. uint32 Offset : 28; // 顶点缓存区 FRHIVertexBuffer* VertexBuffer; FVertexInputStream(); FVertexInputStream(uint32 InStreamIndex, uint32 InOffset, FRHIVertexBuffer* InVertexBuffer); inline bool operator==(const FVertexInputStream& rhs) const; inline bool operator!=(const FVertexInputStream& rhs) const; }; // 顶点输入流数组. typedef TArray> FVertexInputStreamArray; // 顶点流标记 enum class EVertexStreamUsage : uint8 { Default = 0 << 0, // 默认 Instancing = 1 << 0, // 实例化 Overridden = 1 << 1, // 覆盖 ManualFetch = 1 << 2 // 手动获取 }; // 顶点输入流类型. enum class EVertexInputStreamType : uint8 { Default = 0, // 默认 PositionOnly, // 只有位置 PositionAndNormalOnly // 只有位置和法线 }; // 顶点流组件. struct FVertexStreamComponent { // 流数据的顶点缓冲区, 如果为null, 则不会有数据从此顶点流被读取. const FVertexBuffer* VertexBuffer = nullptr; // vertex buffer的偏移. uint32 StreamOffset = 0; // 数据的偏移, 相对于顶点缓冲区中每个元素的开头. uint8 Offset = 0; // 数据的步长. uint8 Stride = 0; // 从流读取的数据类型. TEnumAsByte Type = VET_None; // 顶点流标记. EVertexStreamUsage VertexStreamUsage = EVertexStreamUsage::Default; (......) }; // 着色器使用的顶点工厂的参数绑定接口. class FVertexFactoryShaderParameters { public: // 绑定参数到ParameterMap. 具体逻辑由子类完成. void Bind(const class FShaderParameterMap& ParameterMap) {} // 获取顶点工厂的着色器绑定和顶点流. 具体逻辑由子类完成. void GetElementShaderBindings( const class FSceneInterface* Scene, const class FSceneView* View, const class FMeshMaterialShader* Shader, const EVertexInputStreamType InputStreamType, ERHIFeatureLevel::Type FeatureLevel, const class FVertexFactory* VertexFactory, const struct FMeshBatchElement& BatchElement, class FMeshDrawSingleShaderBindings& ShaderBindings, FVertexInputStreamArray& VertexStreams) const {} (......) }; // 用来表示顶点工厂类型的类. class FVertexFactoryType { public: // 类型定义 typedef FVertexFactoryShaderParameters* (*ConstructParametersType)(EShaderFrequency ShaderFrequency, const class FShaderParameterMap& ParameterMap); typedef const FTypeLayoutDesc* (*GetParameterTypeLayoutType)(EShaderFrequency ShaderFrequency); (......) // 获取顶点工厂类型数量. static int32 GetNumVertexFactoryTypes(); // 获取全局的着色器工厂列表. static RENDERCORE_API TLinkedList*& GetTypeList(); // 获取已存的材质类型列表. static RENDERCORE_API const TArray& GetSortedMaterialTypes(); // 通过名字查找FVertexFactoryType static RENDERCORE_API FVertexFactoryType* GetVFByName(const FHashedName& VFName); // 初始化FVertexFactoryType静态成员, 必须在VF类型创建之前调用. static void Initialize(const TMap >& ShaderFileToUniformBufferVariables); static void Uninitialize(); // 构造/析构函数. RENDERCORE_API FVertexFactoryType(...); virtual ~FVertexFactoryType(); // 数据获取接口. const TCHAR* GetName() const; FName GetFName() const; const FHashedName& GetHashedName() const; const TCHAR* GetShaderFilename() const; // 着色器参数接口. FVertexFactoryShaderParameters* CreateShaderParameters(...) const; const FTypeLayoutDesc* GetShaderParameterLayout(...) const; void GetShaderParameterElementShaderBindings(...) const; // 标记访问. bool IsUsedWithMaterials() const; bool SupportsStaticLighting() const; bool SupportsDynamicLighting() const; bool SupportsPrecisePrevWorldPos() const; bool SupportsPositionOnly() const; bool SupportsCachingMeshDrawCommands() const; bool SupportsPrimitiveIdStream() const; // 获取哈希. friend uint32 GetTypeHash(const FVertexFactoryType* Type); // 基于顶点工厂类型的源码和包含计算出来的哈希. const FSHAHash& GetSourceHash(EShaderPlatform ShaderPlatform) const; // 是否需要缓存材质的着色器类型. bool ShouldCache(const FVertexFactoryShaderPermutationParameters& Parameters) const; void ModifyCompilationEnvironment(...); void ValidateCompiledResult(EShaderPlatform Platform, ...); bool SupportsTessellationShaders() const; // 增加引用的Uniform Buffer包含. void AddReferencedUniformBufferIncludes(...); void FlushShaderFileCache(...); const TMap& GetReferencedUniformBufferStructsCache() const; private: static uint32 NumVertexFactories; static bool bInitializedSerializationHistory; // 顶点工厂类型的各类数据和标记. const TCHAR* Name; const TCHAR* ShaderFilename; FName TypeName; FHashedName HashedName; uint32 bUsedWithMaterials : 1; uint32 bSupportsStaticLighting : 1; uint32 bSupportsDynamicLighting : 1; uint32 bSupportsPrecisePrevWorldPos : 1; uint32 bSupportsPositionOnly : 1; uint32 bSupportsCachingMeshDrawCommands : 1; uint32 bSupportsPrimitiveIdStream : 1; ConstructParametersType ConstructParameters; GetParameterTypeLayoutType GetParameterTypeLayout; GetParameterTypeElementShaderBindingsType GetParameterTypeElementShaderBindings; ShouldCacheType ShouldCacheRef; ModifyCompilationEnvironmentType ModifyCompilationEnvironmentRef; ValidateCompiledResultType ValidateCompiledResultRef; SupportsTessellationShadersType SupportsTessellationShadersRef; // 全局顶点工厂类型列表. TLinkedList GlobalListLink; // 缓存引用的Uniform Buffer的包含. TMap ReferencedUniformBufferStructsCache; // 跟踪ReferencedUniformBufferStructsCache缓存了哪些平台的声明. bool bCachedUniformBufferStructDeclarations; }; // ------顶点工厂的工具宏------ // 实现顶点工厂参数类型 #define IMPLEMENT_VERTEX_FACTORY_PARAMETER_TYPE(FactoryClass, ShaderFrequency, ParameterClass) // 顶点工厂类型的声明 #define DECLARE_VERTEX_FACTORY_TYPE(FactoryClass) // 顶点工厂类型的实现 #define IMPLEMENT_VERTEX_FACTORY_TYPE(FactoryClass,ShaderFilename,bUsedWithMaterials,bSupportsStaticLighting,bSupportsDynamicLighting,bPrecisePrevWorldPos,bSupportsPositionOnly) // 顶点工厂的虚函数表实现 #define IMPLEMENT_VERTEX_FACTORY_VTABLE(FactoryClass // 顶点工厂 class FVertexFactory : public FRenderResource { public: FVertexFactory(ERHIFeatureLevel::Type InFeatureLevel); virtual FVertexFactoryType* GetType() const; // 获取顶点数据流. void GetStreams(ERHIFeatureLevel::Type InFeatureLevel, EVertexInputStreamType VertexStreamType, FVertexInputStreamArray& OutVertexStreams) const { // Default顶点流类型 if (VertexStreamType == EVertexInputStreamType::Default) { bool bSupportsVertexFetch = SupportsManualVertexFetch(InFeatureLevel); // 将顶点工厂的数据构造到FVertexInputStream中并添加到输出列表 for (int32 StreamIndex = 0;StreamIndex < Streams.Num();StreamIndex++) { const FVertexStream& Stream = Streams[StreamIndex]; if (!(EnumHasAnyFlags(EVertexStreamUsage::ManualFetch, Stream.VertexStreamUsage) && bSupportsVertexFetch)) { if (!Stream.VertexBuffer) { OutVertexStreams.Add(FVertexInputStream(StreamIndex, 0, nullptr)); } else { if (EnumHasAnyFlags(EVertexStreamUsage::Overridden, Stream.VertexStreamUsage) && !Stream.VertexBuffer->IsInitialized()) { OutVertexStreams.Add(FVertexInputStream(StreamIndex, 0, nullptr)); } else { OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI)); } } } } } // 只有位置和的顶点流类型 else if (VertexStreamType == EVertexInputStreamType::PositionOnly) { // Set the predefined vertex streams. for (int32 StreamIndex = 0; StreamIndex < PositionStream.Num(); StreamIndex++) { const FVertexStream& Stream = PositionStream[StreamIndex]; OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI)); } } // 只有位置和法线的顶点流类型 else if (VertexStreamType == EVertexInputStreamType::PositionAndNormalOnly) { // Set the predefined vertex streams. for (int32 StreamIndex = 0; StreamIndex < PositionAndNormalStream.Num(); StreamIndex++) { const FVertexStream& Stream = PositionAndNormalStream[StreamIndex]; OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI)); } } else { // NOT_IMPLEMENTED } } // 偏移实例的数据流. void OffsetInstanceStreams(uint32 InstanceOffset, EVertexInputStreamType VertexStreamType, FVertexInputStreamArray& VertexStreams) const; static void ModifyCompilationEnvironment(...); static void ValidateCompiledResult(...); static bool SupportsTessellationShaders(); // FRenderResource接口, 释放RHI资源. virtual void ReleaseRHI(); // 设置/获取顶点声明的RHI引用. FVertexDeclarationRHIRef& GetDeclaration(); void SetDeclaration(FVertexDeclarationRHIRef& NewDeclaration); // 根据类型获取顶点声明的RHI引用. const FVertexDeclarationRHIRef& GetDeclaration(EVertexInputStreamType InputStreamType) const { switch (InputStreamType) { case EVertexInputStreamType::Default: return Declaration; case EVertexInputStreamType::PositionOnly: return PositionDeclaration; case EVertexInputStreamType::PositionAndNormalOnly: return PositionAndNormalDeclaration; } return Declaration; } // 各类标记. virtual bool IsGPUSkinned() const; virtual bool SupportsPositionOnlyStream() const; virtual bool SupportsPositionAndNormalOnlyStream() const; virtual bool SupportsNullPixelShader() const; // 用面向摄像机精灵的方式渲染图元. virtual bool RendersPrimitivesAsCameraFacingSprites() const; // 是否需要顶点声明. bool NeedsDeclaration() const; // 是否支持手动的顶点获取. inline bool SupportsManualVertexFetch(const FStaticFeatureLevel InFeatureLevel) const; // 根据流类型获取索引. inline int32 GetPrimitiveIdStreamIndex(EVertexInputStreamType InputStreamType) const; protected: inline void SetPrimitiveIdStreamIndex(EVertexInputStreamType InputStreamType, int32 StreamIndex) { PrimitiveIdStreamIndex[static_cast(InputStreamType)] = StreamIndex; } // 为顶点流组件创建顶点元素. FVertexElement AccessStreamComponent(const FVertexStreamComponent& Component,uint8 AttributeIndex); FVertexElement AccessStreamComponent(const FVertexStreamComponent& Component, uint8 AttributeIndex, EVertexInputStreamType InputStreamType); // 初始化顶点声明. void InitDeclaration(const FVertexDeclarationElementList& Elements, EVertexInputStreamType StreamType = EVertexInputStreamType::Default) { if (StreamType == EVertexInputStreamType::PositionOnly) { PositionDeclaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements); } else if (StreamType == EVertexInputStreamType::PositionAndNormalOnly) { PositionAndNormalDeclaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements); } else // (StreamType == EVertexInputStreamType::Default) { // Create the vertex declaration for rendering the factory normally. Declaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements); } } // 顶点流, 需要设置到顶点流的信息体. struct FVertexStream { const FVertexBuffer* VertexBuffer = nullptr; uint32 Offset = 0; uint16 Stride = 0; EVertexStreamUsage VertexStreamUsage = EVertexStreamUsage::Default; uint8 Padding = 0; friend bool operator==(const FVertexStream& A,const FVertexStream& B); FVertexStream(); }; // 用于渲染顶点工厂的顶点流. TArray > Streams; // VF(顶点工厂)可以显式地将此设置为false,以避免在没有声明的情况下出现错误. 主要用于需要直接从缓冲区获取数据的VF(如Niagara). bool bNeedsDeclaration = true; bool bSupportsManualVertexFetch = false; int8 PrimitiveIdStreamIndex[3] = { -1, -1, -1 }; private: // 只有位置的顶点流, 用于渲染深度Pass的顶点工厂. TArray > PositionStream; // 只有位置和法线的顶点流. TArray > PositionAndNormalStream; // 用于常规渲染顶点工厂的RHI顶点声明. FVertexDeclarationRHIRef Declaration; // PositionStream和PositionAndNormalStream对应的RHI资源. FVertexDeclarationRHIRef PositionDeclaration; FVertexDeclarationRHIRef PositionAndNormalDeclaration; }; ``` 上面展示了Vertex Factory的很多类型,有好几个是核心类,比如FVertexFactory、FVertexElement、FRHIVertexDeclaration、FRHIVertexBuffer、FVertexFactoryType、FVertexStreamComponent、FVertexInputStream、FVertexFactoryShaderParameters等。那么它们之间的关系是什么呢? 为了更好地说明它们之间的关系,以静态模型的FStaticMeshDataType为例: ![[UE_VertexFactory_FStaticMeshDataType.jpg]]