--- title: Untitled date: 2024-02-04 12:57:56 excerpt: tags: rating: ⭐ --- # 前言 原文地址:https://www.cnblogs.com/timlly/p/15156626.html # 概念 - FRenderResource:是渲染线程的渲染资源基础父类,实际的数据和逻辑由子类实现。可以认为是渲染线程中承载**CPU相关相关渲染的载体**。 - 比如输入的顶点数据、顶点Index数据、贴图数据等。 - FRHIResource:抽象了GPU侧的资源,也是众多RHI资源类型的父类。可以认为是承载**显卡API相关资源的载体**。 - 比如TextureSampler、TextureObject等。 - FRHICommand:其父类为**FRHICommandBase**结构体。其含有**FRHICommandBase* Next**用来保存下一个Command的指针,所以存储他的结构为**链表**。 - 含有接口:void void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext& DebugContext)。执行完就销毁。 - UE使用**FRHICOMMAND_MACRO**宏来快速定义各种RHICommand。主要功能包含: - 数据和资源的设置、更新、清理、转换、拷贝、回读。 - 图元绘制。 - Pass、SubPass、场景、ViewPort等的开始和结束事件。 - 栅栏、等待、广播接口。 - 光线追踪。 - Slate、调试相关的命令。 - FRHICommandList:是**RHI的指令队列**,用来管理、执行一组FRHICommand的对象。 - 其子类有**FRHICommandListImmediate**(立即执行队列)、FRHIComputeCommandList_RecursiveHazardous与TRHIComputeCommandList_RecursiveHazardous(命令列表的递归使用) - IRHICommandContext:是RHI的命令上下文接口类,定义了一组图形API相关的操作。在可以并行处理命令列表的平台上,它是一个单独的对象类。 - 主要的接口函数有: - 派发ComputeShader - 渲染查询(可见性?) - 相关开始/结束函数。 - 设置数据(Viewport、GraphicsPipelineState等) - 设置ShadserParameter - 绘制图元 - 纹理拷贝/更新 - Raytracing - IRHICommandContext的接口和FRHICommandList的接口高度相似且重叠。IRHICommandContext还有许多子类: - IRHICommandContextPSOFallback:不支持真正的图形管道的RHI命令上下文。 - FNullDynamicRHI:空实现的动态绑定RHI。 - FOpenGLDynamicRHI:OpenGL的动态RHI。 - FD3D11DynamicRHI:D3D11的动态RHI。 - FMetalRHICommandContext:Metal平台的命令上下文。 - FD3D12CommandContextBase:D3D12的命令上下文。 - FVulkanCommandListContext:Vulkan平台的命令队列上下文。 - FEmptyDynamicRHI:动态绑定的RHI实现的接口。 - FValidationContext:校验上下文。 - IRHICommandContextContainer:IRHICommandContextContainer就是包含了IRHICommandContext对象的类型。相当于存储了一个或一组命令上下文的容器,以支持并行化地提交命令队列,只在D3D12、Metal、Vulkan等现代图形API中有实现。 - D3D12存储了FD3D12Adapter* Adapter、FD3D12CommandContext* CmdContext、 FD3D12CommandContextRedirector* CmdContextRedirector。 - FDynamicRHI:FDynamicRHI是由动态绑定的RHI实现的接口,它定义的接口和CommandList、CommandContext比较相似。 - 代码详见[[#FDynamicRHI]] - FRHICommandListExecutor:负责将**Renderer层的RHI中间指令转译(或直接调用)到目标平台的图形API**,它在RHI体系中起着举足轻重的作用。 - FParallelCommandListSet:用于实现并行渲染。使用案例详见[[#FParallelCommandListSet]]。目前5.3只有下面2个子类: - FRDGParallelCommandListSet - FShadowParallelCommandListSet ## FDynamicRHI ```c++ class RHI_API FDynamicRHI { public: virtual ~FDynamicRHI() {} virtual void Init() = 0; virtual void PostInit() {} virtual void Shutdown() = 0; void InitPixelFormatInfo(const TArray& PixelFormatBlockBytesIn); // ---- RHI接口 ---- // 下列接口要求FlushType: Thread safe virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) = 0; virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) = 0; virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) = 0; virtual FBlendStateRHIRef RHICreateBlendState(const FBlendStateInitializerRHI& Initializer) = 0; // 下列接口要求FlushType: Wait RHI Thread virtual FVertexDeclarationRHIRef RHICreateVertexDeclaration(const FVertexDeclarationElementList& Elements) = 0; virtual FPixelShaderRHIRef RHICreatePixelShader(TArrayView Code, const FSHAHash& Hash) = 0; virtual FVertexShaderRHIRef RHICreateVertexShader(TArrayView Code, const FSHAHash& Hash) = 0; virtual FHullShaderRHIRef RHICreateHullShader(TArrayView Code, const FSHAHash& Hash) = 0; virtual FDomainShaderRHIRef RHICreateDomainShader(TArrayView Code, const FSHAHash& Hash) = 0; virtual FGeometryShaderRHIRef RHICreateGeometryShader(TArrayView Code, const FSHAHash& Hash) = 0; virtual FComputeShaderRHIRef RHICreateComputeShader(TArrayView Code, const FSHAHash& Hash) = 0; // FlushType: Must be Thread-Safe. virtual FRenderQueryPoolRHIRef RHICreateRenderQueryPool(ERenderQueryType QueryType, uint32 NumQueries = UINT32_MAX); inline FComputeFenceRHIRef RHICreateComputeFence(const FName& Name); virtual FGPUFenceRHIRef RHICreateGPUFence(const FName &Name); virtual void RHICreateTransition(FRHITransition* Transition, ERHIPipeline SrcPipelines, ERHIPipeline DstPipelines, ERHICreateTransitionFlags CreateFlags, TArrayView Infos); virtual void RHIReleaseTransition(FRHITransition* Transition); // FlushType: Thread safe. virtual FStagingBufferRHIRef RHICreateStagingBuffer(); virtual void* RHILockStagingBuffer(FRHIStagingBuffer* StagingBuffer, FRHIGPUFence* Fence, uint32 Offset, uint32 SizeRHI); virtual void RHIUnlockStagingBuffer(FRHIStagingBuffer* StagingBuffer); // FlushType: Thread safe, but varies depending on the RHI virtual FBoundShaderStateRHIRef RHICreateBoundShaderState(FRHIVertexDeclaration* VertexDeclaration, FRHIVertexShader* VertexShader, FRHIHullShader* HullShader, FRHIDomainShader* DomainShader, FRHIPixelShader* PixelShader, FRHIGeometryShader* GeometryShader) = 0; // FlushType: Thread safe virtual FGraphicsPipelineStateRHIRef RHICreateGraphicsPipelineState(const FGraphicsPipelineStateInitializer& Initializer); // FlushType: Thread safe, but varies depending on the RHI virtual FUniformBufferRHIRef RHICreateUniformBuffer(const void* Contents, const FRHIUniformBufferLayout& Layout, EUniformBufferUsage Usage, EUniformBufferValidation Validation) = 0; virtual void RHIUpdateUniformBuffer(FRHIUniformBuffer* UniformBufferRHI, const void* Contents) = 0; // FlushType: Wait RHI Thread virtual FIndexBufferRHIRef RHICreateIndexBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0; virtual void* RHILockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer, uint32 Offset, uint32 Size, EResourceLockMode LockMode); virtual void RHIUnlockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer); virtual void RHITransferIndexBufferUnderlyingResource(FRHIIndexBuffer* DestIndexBuffer, FRHIIndexBuffer* SrcIndexBuffer); // FlushType: Wait RHI Thread virtual FVertexBufferRHIRef RHICreateVertexBuffer(uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0; // FlushType: Flush RHI Thread virtual void* RHILockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode); virtual void RHIUnlockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer); // FlushType: Flush Immediate (seems dangerous) virtual void RHICopyVertexBuffer(FRHIVertexBuffer* SourceBuffer, FRHIVertexBuffer* DestBuffer) = 0; virtual void RHITransferVertexBufferUnderlyingResource(FRHIVertexBuffer* DestVertexBuffer, FRHIVertexBuffer* SrcVertexBuffer); // FlushType: Wait RHI Thread virtual FStructuredBufferRHIRef RHICreateStructuredBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0; // FlushType: Flush RHI Thread virtual void* RHILockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode); virtual void RHIUnlockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer); // FlushType: Wait RHI Thread virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHIStructuredBuffer* StructuredBuffer, bool bUseUAVCounter, bool bAppendBuffer) = 0; // FlushType: Wait RHI Thread virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel) = 0; // FlushType: Wait RHI Thread virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel, uint8 Format); (......) // RHI帧更新,须从主线程调用,FlushType: Thread safe virtual void RHITick(float DeltaTime) = 0; // 阻塞CPU直到GPU执行完成变成空闲. FlushType: Flush Immediate (seems wrong) virtual void RHIBlockUntilGPUIdle() = 0; // 开始当前帧,并确保GPU正在积极地工作 FlushType: Flush Immediate (copied from RHIBlockUntilGPUIdle) virtual void RHISubmitCommandsAndFlushGPU() {}; // 通知RHI准备暂停它. virtual void RHIBeginSuspendRendering() {}; // 暂停RHI渲染并将控制权交给系统的操作, FlushType: Thread safe virtual void RHISuspendRendering() {}; // 继续RHI渲染, FlushType: Thread safe virtual void RHIResumeRendering() {}; // FlushType: Flush Immediate virtual bool RHIIsRenderingSuspended() { return false; }; // FlushType: called from render thread when RHI thread is flushed // 仅在FRHIResource::FlushPendingDeletes内的延迟删除之前每帧调用. virtual void RHIPerFrameRHIFlushComplete(); // 执行命令队列, FlushType: Wait RHI Thread virtual void RHIExecuteCommandList(FRHICommandList* CmdList) = 0; // FlushType: Flush RHI Thread virtual void* RHIGetNativeDevice() = 0; // FlushType: Flush RHI Thread virtual void* RHIGetNativeInstance() = 0; // 获取命令上下文. FlushType: Thread safe virtual IRHICommandContext* RHIGetDefaultContext() = 0; // 获取计算上下文. FlushType: Thread safe virtual IRHIComputeContext* RHIGetDefaultAsyncComputeContext(); // FlushType: Thread safe virtual class IRHICommandContextContainer* RHIGetCommandContextContainer(int32 Index, int32 Num) = 0; // 直接由渲染线程调用的接口, 以优化RHI调用. virtual FVertexBufferRHIRef CreateAndLockVertexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer); virtual FIndexBufferRHIRef CreateAndLockIndexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer); (......) // Buffer Lock/Unlock virtual void* LockVertexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...); virtual void* LockIndexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...); (......) }; ``` 以上只显示了部分接口,其中部分接口要求从渲染线程调用,部分须从游戏线程调用。大多数接口在被调用前需刷新指定类型的命令,比如: ```c++ class RHI_API FDynamicRHI { // FlushType: Wait RHI Thread void RHIExecuteCommandList(FRHICommandList* CmdList); // FlushType: Flush Immediate void RHIBlockUntilGPUIdle(); // FlushType: Thread safe void RHITick(float DeltaTime); }; ``` 可以在**FRHICommandListImmediate**的**ExecuteCommandList()**、**BlockUntilGPUIdle()**、**Tick()** 看到调用。 >需要注意的是,传统图形API(D3D11、OpenGL)除了继承FDynamicRHI,还需要继承**IRHICommandContextPSOFallback**,因为需要借助后者的接口处理PSO的数据和行为,以保证传统和现代API对PSO的一致处理行为。也正因为此,现代图形API(D3D12、Vulkan、Metal)不需要继承**IRHICommandContext**的任何继承体系的类型,单单直接继承**FDynamicRHI**就可以处理RHI层的所有数据和操作。 既然现代图形API(D3D12、Vulkan、Metal)的**DynamicRHI**没有继承**IRHICommandContext**的任何继承体系的类型,那么它们是如何实现FDynamicRHI::RHIGetDefaultContext的接口?下面以FD3D12DynamicRHI为例: ## FParallelCommandListSet ```c++ //Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp void FDeferredShadingSceneRenderer::RenderPrePass(FRDGBuilder& GraphBuilder, FRDGTextureRef SceneDepthTexture, FInstanceCullingManager& InstanceCullingManager, FRDGTextureRef* FirstStageDepthBuffer) { RDG_EVENT_SCOPE(GraphBuilder, "PrePass %s %s", GetDepthDrawingModeString(DepthPass.EarlyZPassMode), GetDepthPassReason(DepthPass.bDitheredLODTransitionsUseStencil, ShaderPlatform)); RDG_CSV_STAT_EXCLUSIVE_SCOPE(GraphBuilder, RenderPrePass); RDG_GPU_STAT_SCOPE(GraphBuilder, Prepass); SCOPED_NAMED_EVENT(FDeferredShadingSceneRenderer_RenderPrePass, FColor::Emerald); SCOPE_CYCLE_COUNTER(STAT_DepthDrawTime); const bool bParallelDepthPass = GRHICommandList.UseParallelAlgorithms() && CVarParallelPrePass.GetValueOnRenderThread(); RenderPrePassHMD(GraphBuilder, SceneDepthTexture); if (DepthPass.IsRasterStencilDitherEnabled()) { AddDitheredStencilFillPass(GraphBuilder, Views, SceneDepthTexture, DepthPass); } auto RenderDepthPass = [&](uint8 DepthMeshPass) { check(DepthMeshPass == EMeshPass::DepthPass || DepthMeshPass == EMeshPass::SecondStageDepthPass); const bool bSecondStageDepthPass = DepthMeshPass == EMeshPass::SecondStageDepthPass; if (bParallelDepthPass) { RDG_WAIT_FOR_TASKS_CONDITIONAL(GraphBuilder, IsDepthPassWaitForTasksEnabled()); for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex) { FViewInfo& View = Views[ViewIndex]; RDG_GPU_MASK_SCOPE(GraphBuilder, View.GPUMask); RDG_EVENT_SCOPE_CONDITIONAL(GraphBuilder, Views.Num() > 1, "View%d", ViewIndex); FMeshPassProcessorRenderState DrawRenderState; SetupDepthPassState(DrawRenderState); const bool bShouldRenderView = View.ShouldRenderView() && (bSecondStageDepthPass ? View.bUsesSecondStageDepthPass : true); if (bShouldRenderView) { View.BeginRenderView(); FDepthPassParameters* PassParameters = GetDepthPassParameters(GraphBuilder, View, SceneDepthTexture); View.ParallelMeshDrawCommandPasses[DepthMeshPass].BuildRenderingCommands(GraphBuilder, Scene->GPUScene, PassParameters->InstanceCullingDrawParams); GraphBuilder.AddPass( bSecondStageDepthPass ? RDG_EVENT_NAME("SecondStageDepthPassParallel") : RDG_EVENT_NAME("DepthPassParallel"), PassParameters, ERDGPassFlags::Raster | ERDGPassFlags::SkipRenderPass, [this, &View, PassParameters, DepthMeshPass](const FRDGPass* InPass, FRHICommandListImmediate& RHICmdList) { //并行渲染逻辑主要在这里 FRDGParallelCommandListSet ParallelCommandListSet(InPass, RHICmdList, GET_STATID(STAT_CLP_Prepass), View, FParallelCommandListBindings(PassParameters)); ParallelCommandListSet.SetHighPriority(); View.ParallelMeshDrawCommandPasses[DepthMeshPass].DispatchDraw(&ParallelCommandListSet, RHICmdList, &PassParameters->InstanceCullingDrawParams); }); RenderPrePassEditorPrimitives(GraphBuilder, View, PassParameters, DrawRenderState, DepthPass.EarlyZPassMode, InstanceCullingManager); } } } ··· } //Engine\Source\Runtime\Renderer\Private\MeshDrawCommands.cpp void FParallelMeshDrawCommandPass::DispatchDraw(FParallelCommandListSet* ParallelCommandListSet, FRHICommandList& RHICmdList, const FInstanceCullingDrawParams* InstanceCullingDrawParams) const { TRACE_CPUPROFILER_EVENT_SCOPE(ParallelMdcDispatchDraw); if (MaxNumDraws <= 0) { return; } FMeshDrawCommandOverrideArgs OverrideArgs; if (InstanceCullingDrawParams) { OverrideArgs = GetMeshDrawCommandOverrideArgs(*InstanceCullingDrawParams); } if (ParallelCommandListSet) { const ENamedThreads::Type RenderThread = ENamedThreads::GetRenderThread(); FGraphEventArray Prereqs; if (ParallelCommandListSet->GetPrereqs()) { Prereqs.Append(*ParallelCommandListSet->GetPrereqs()); } if (TaskEventRef.IsValid()) { Prereqs.Add(TaskEventRef); } // Distribute work evenly to the available task graph workers based on NumEstimatedDraws. // Every task will then adjust it's working range based on FVisibleMeshDrawCommandProcessTask results. const int32 NumThreads = FMath::Min(FTaskGraphInterface::Get().GetNumWorkerThreads(), ParallelCommandListSet->Width); const int32 NumTasks = FMath::Min(NumThreads, FMath::DivideAndRoundUp(MaxNumDraws, ParallelCommandListSet->MinDrawsPerCommandList)); const int32 NumDrawsPerTask = FMath::DivideAndRoundUp(MaxNumDraws, NumTasks); for (int32 TaskIndex = 0; TaskIndex < NumTasks; TaskIndex++) { const int32 StartIndex = TaskIndex * NumDrawsPerTask; const int32 NumDraws = FMath::Min(NumDrawsPerTask, MaxNumDraws - StartIndex); checkSlow(NumDraws > 0); FRHICommandList* CmdList = ParallelCommandListSet->NewParallelCommandList(); FGraphEventRef AnyThreadCompletionEvent = TGraphTask::CreateTask(&Prereqs, RenderThread) .ConstructAndDispatchWhenReady(*CmdList, TaskContext.InstanceCullingContext, TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, OverrideArgs, TaskContext.InstanceFactor, TaskIndex, NumTasks); ParallelCommandListSet->AddParallelCommandList(CmdList, AnyThreadCompletionEvent, NumDraws); } } else { QUICK_SCOPE_CYCLE_COUNTER(STAT_MeshPassDrawImmediate); WaitForMeshPassSetupTask(IsInActualRenderingThread() ? EWaitThread::Render : EWaitThread::Task); if (TaskContext.bUseGPUScene) { if (TaskContext.MeshDrawCommands.Num() > 0) { TaskContext.InstanceCullingContext.SubmitDrawCommands( TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, OverrideArgs, 0, TaskContext.MeshDrawCommands.Num(), TaskContext.InstanceFactor, RHICmdList); } } else { SubmitMeshDrawCommandsRange(TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, nullptr, 0, 0, TaskContext.bDynamicInstancing, 0, TaskContext.MeshDrawCommands.Num(), TaskContext.InstanceFactor, RHICmdList); } } } ``` ## 普通Pass渲染 ```c++ // 代码为UE5旧版本代码 // Engine\Source\Runtime\RHI\Public\RHIResources.h // 渲染通道信息. struct FRHIRenderPassInfo { // 渲染纹理信息. struct FColorEntry { FRHITexture* RenderTarget; FRHITexture* ResolveTarget; int32 ArraySlice; uint8 MipIndex; ERenderTargetActions Action; }; FColorEntry ColorRenderTargets[MaxSimultaneousRenderTargets]; // 深度模板信息. struct FDepthStencilEntry { FRHITexture* DepthStencilTarget; FRHITexture* ResolveTarget; EDepthStencilTargetActions Action; FExclusiveDepthStencil ExclusiveDepthStencil; }; FDepthStencilEntry DepthStencilRenderTarget; // 解析参数. FResolveParams ResolveParameters; // 部分RHI可以使用纹理来控制不同区域的采样和/或阴影分辨率 FTextureRHIRef FoveationTexture = nullptr; // 部分RHI需要一个提示,遮挡查询将在这个渲染通道中使用 uint32 NumOcclusionQueries = 0; bool bOcclusionQueries = false; // 部分RHI需要知道,在为部分资源转换生成mip映射的情况下,这个渲染通道是否将读取和写入相同的纹理. bool bGeneratingMips = false; // 如果这个renderpass应该是多视图,则需要多少视图. uint8 MultiViewCount = 0; // 部分RHI的提示,渲染通道将有特定的子通道. ESubpassHint SubpassHint = ESubpassHint::None; // 是否太多UAV. bool bTooManyUAVs = false; bool bIsMSAA = false; // 不同的构造函数. // Color, no depth, optional resolve, optional mip, optional array slice explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveRT = nullptr, uint32 InMipIndex = 0, int32 InArraySlice = -1); // Color MRTs, no depth explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction); // Color MRTs, no depth explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveTargets[]); // Color MRTs and depth explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Color MRTs and depth explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveRTs[], FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Depth, no color explicit FRHIRenderPassInfo(FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Depth, no color, occlusion queries explicit FRHIRenderPassInfo(FRHITexture* DepthRT, uint32 InNumOcclusionQueries, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Color and depth explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Color and depth with resolve explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); // Color and depth with resolve and optional sample density explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FRHITexture* InFoveationTexture, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite); enum ENoRenderTargets { NoRenderTargets, }; explicit FRHIRenderPassInfo(ENoRenderTargets Dummy); explicit FRHIRenderPassInfo(); inline int32 GetNumColorRenderTargets() const; RHI_API void Validate() const; RHI_API void ConvertToRenderTargetsInfo(FRHISetRenderTargetsInfo& OutRTInfo) const; (......) }; // Engine\Source\Runtime\RHI\Public\RHICommandList.h class RHI_API FRHICommandList : public FRHIComputeCommandList { public: void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name) { if (InInfo.bTooManyUAVs) { UE_LOG(LogRHI, Warning, TEXT("RenderPass %s has too many UAVs")); } InInfo.Validate(); // 直接调用RHI的接口. if (Bypass()) { GetContext().RHIBeginRenderPass(InInfo, Name); } // 分配RHI命令. else { TCHAR* NameCopy = AllocString(Name); ALLOC_COMMAND(FRHICommandBeginRenderPass)(InInfo, NameCopy); } // 设置在RenderPass内标记. Data.bInsideRenderPass = true; // 缓存活动的RT. CacheActiveRenderTargets(InInfo); // 重置子Pass. ResetSubpass(InInfo.SubpassHint); Data.bInsideRenderPass = true; } void EndRenderPass() { // 调用或分配RHI接口. if (Bypass()) { GetContext().RHIEndRenderPass(); } else { ALLOC_COMMAND(FRHICommandEndRenderPass)(); } // 重置在RenderPass内标记. Data.bInsideRenderPass = false; // 重置子Pass标记为None. ResetSubpass(ESubpassHint::None); } }; ``` 它们的使用案例如下: 主要是`FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore)`与`RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"))` ```c++ bool FRHIDrawTests::Test_MultiDrawIndirect(FRHICommandListImmediate& RHICmdList) { if (!GRHIGlobals.SupportsMultiDrawIndirect) { return true; } // Probably could/should automatically enable in the outer scope when running RHI Unit Tests // RenderCaptureInterface::FScopedCapture RenderCapture(true /*bEnable*/, &RHICmdList, TEXT("Test_MultiDrawIndirect")); static constexpr uint32 MaxInstances = 8; // D3D12 does not have a way to get the base instance ID (SV_InstanceID always starts from 0), so we must emulate it... const uint32 InstanceIDs[MaxInstances] = { 0, 1, 2, 3, 4, 5, 6, 7 }; FBufferRHIRef InstanceIDBuffer = CreateBufferWithData(EBufferUsageFlags::VertexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_InstanceID"), MakeArrayView(InstanceIDs)); FVertexDeclarationElementList VertexDeclarationElements; VertexDeclarationElements.Add(FVertexElement(0, 0, VET_UInt, 0, 4, true /*per instance frequency*/)); FVertexDeclarationRHIRef VertexDeclarationRHI = PipelineStateCache::GetOrCreateVertexDeclaration(VertexDeclarationElements); const uint16 Indices[3] = { 0, 1, 2 }; FBufferRHIRef IndexBuffer = CreateBufferWithData(EBufferUsageFlags::IndexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_IndexBuffer"), MakeArrayView(Indices)); static constexpr uint32 OutputBufferStride = sizeof(uint32); static constexpr uint32 OutputBufferSize = OutputBufferStride * MaxInstances; FRHIResourceCreateInfo OutputBufferCreateInfo(TEXT("Test_MultiDrawIndirect_OutputBuffer")); FBufferRHIRef OutputBuffer = RHICmdList.CreateBuffer(OutputBufferSize, EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::SourceCopy, OutputBufferStride, ERHIAccess::UAVCompute, OutputBufferCreateInfo); const uint32 CountValues[4] = { 1, 1, 16, 0 }; FBufferRHIRef CountBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess, ERHIAccess::IndirectArgs, TEXT("Test_MultiDrawIndirect_Count"), MakeArrayView(CountValues)); const FRHIDrawIndexedIndirectParameters DrawArgs[] = { // IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation {3, 1, 0, 0, 0}, // fill slot 0 // gap in slot 1 {3, 2, 0, 0, 2}, // fill slots 2, 3 using 1 sub-draw // gap in slot 4 {3, 1, 0, 0, 5}, // fill slots 5, 6 using 2 sub-draws {3, 1, 0, 0, 6}, {3, 1, 0, 0, 7}, // this draw is expected to never execute }; const uint32 ExpectedDrawnInstances[MaxInstances] = { 1, 0, 1, 1, 0, 1, 1, 0 }; FBufferRHIRef DrawArgBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::VertexBuffer, ERHIAccess::IndirectArgs, TEXT("Test_MultiDrawIndirect_DrawArgs"), MakeArrayView(DrawArgs)); FUnorderedAccessViewRHIRef OutputBufferUAV = RHICmdList.CreateUnorderedAccessView(OutputBuffer, FRHIViewDesc::CreateBufferUAV() .SetType(FRHIViewDesc::EBufferType::Typed) .SetFormat(PF_R32_UINT)); RHICmdList.ClearUAVUint(OutputBufferUAV, FUintVector4(0)); const FIntPoint RenderTargetSize(4, 4); FRHITextureDesc RenderTargetTextureDesc(ETextureDimension::Texture2D, ETextureCreateFlags::RenderTargetable, PF_B8G8R8A8, FClearValueBinding(), RenderTargetSize, 1, 1, 1, 1, 0); FRHITextureCreateDesc RenderTargetCreateDesc(RenderTargetTextureDesc, ERHIAccess::RTV, TEXT("Test_MultiDrawIndirect_RenderTarget")); FTextureRHIRef RenderTarget = RHICreateTexture(RenderTargetCreateDesc); TShaderMapRef VertexShader(GetGlobalShaderMap(GMaxRHIFeatureLevel)); TShaderMapRef PixelShader(GetGlobalShaderMap(GMaxRHIFeatureLevel)); FGraphicsPipelineStateInitializer GraphicsPSOInit; GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader(); GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = VertexDeclarationRHI; GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader(); GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState::GetRHI(); GraphicsPSOInit.BlendState = TStaticBlendState<>::GetRHI(); GraphicsPSOInit.RasterizerState = TStaticRasterizerState<>::GetRHI(); GraphicsPSOInit.PrimitiveType = EPrimitiveType::PT_TriangleList; FRHITexture* ColorRTs[1] = { RenderTarget.GetReference() }; FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore); RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVCompute, ERHIAccess::UAVGraphics, EResourceTransitionFlags::None)); RHICmdList.BeginUAVOverlap(); // Output UAV can be written without syncs between draws (each draw is expected to write into different slots) RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect")); RHICmdList.SetViewport(0, 0, 0, float(RenderTargetSize.X), float(RenderTargetSize.Y), 1); RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit); SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit, 0); check(InstanceIDBuffer->GetStride() == 4); RHICmdList.SetStreamSource(0, InstanceIDBuffer, 0); FRHIBatchedShaderParameters ShaderParameters; ShaderParameters.SetUAVParameter(PixelShader->OutDrawnInstances.GetBaseIndex(), OutputBufferUAV); RHICmdList.SetBatchedShaderParameters(PixelShader.GetPixelShader(), ShaderParameters); const uint32 DrawArgsStride = sizeof(DrawArgs[0]); const uint32 CountStride = sizeof(CountValues[0]); RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer, DrawArgBuffer, DrawArgsStride*0, // 1 sub-draw with instance index 0 CountBuffer, CountStride*0, // count buffer contains 1 in this slot 5 // expect to draw only 1 instance due to GPU-side upper bound ); RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer, DrawArgBuffer, DrawArgsStride*1, // 1 sub-draw with 2 instances at base index 2 CountBuffer, CountStride*1, // count buffer contains 1 in this slot 4 // expect to draw only 1 instance due to GPU-side upper bound ); RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer, DrawArgBuffer, DrawArgsStride*2, // 2 sub-draws with 1 instance each starting at base index 5 CountBuffer, CountStride*2, // count buffer contains 16 in this slot 2 // expect to draw only 2 instances due to CPU-side upper bound ); RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer, DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7 CountBuffer, CountStride*3, // count buffer contains 0 in this slot 1 // expect to skip the draw due to GPU-side count of 0 ); RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer, DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7 CountBuffer, CountStride*0, // count buffer contains 1 in this slot 0 // expect to skip the draw due to CPU-side count of 0 ); RHICmdList.EndRenderPass(); RHICmdList.EndUAVOverlap(); RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVGraphics, ERHIAccess::CopySrc, EResourceTransitionFlags::None)); TConstArrayView ExpectedOutputView = MakeArrayView(reinterpret_cast(ExpectedDrawnInstances), sizeof(ExpectedDrawnInstances)); bool bSucceeded = FRHIBufferTests::VerifyBufferContents(TEXT("Test_MultiDrawIndirect"), RHICmdList, OutputBuffer, ExpectedOutputView); return bSucceeded; } ``` ## Subpass 先说一下Subpass的由来、作用和特点。 在传统的多Pass渲染中,每个Pass结束时通常会渲染出一组渲染纹理,部分成为着色器参数提供给下一个Pass采样读取。这种纹理采样方式不受任何限制,可以读取任意的领域像素,使用任意的纹理过滤方式。这种方式虽然使用灵活,但在TBR(Tile-Based Renderer)硬件架构的设备中会有较大的消耗:渲染纹理的Pass通常会将渲染结果存储在On-chip的Tile Memory中,待Pass结束后会写回GPU显存(VRAM)中,写回GPU显存是个耗时耗耗电的操作。 ![](https://img2020.cnblogs.com/blog/1617944/202108/1617944-20210818142400565-369905116.jpg) _传统多Pass之间的内存存取模型,多次发生于On-Chip和全局存储器之间。_ 如果出现一种特殊的纹理使用情况:上一个Pass渲染处理的纹理,立即被下一个Pass使用,并且下一个Pass只采样像素位置自身的数据,而不需要采样邻域像素的位置。这种情况就符合了Subpass的使用情景。使用Subpass渲染的纹理结果只会存储在Tile Memory中,在Subpass结束后不会写回VRAM,而直接提供Tile Memory的数据给下一个Subpass采样读取。这样就避免了传统Pass结束写回GPU显存以及下一个Pass又从GPU显存读数据的耗时耗电操作,从而提升了性能。 ![](https://img2020.cnblogs.com/blog/1617944/202108/1617944-20210818142406863-486058547.jpg) _Subpass之间的内存存取模型,都发生在On-Chip内。_ Subpass的相关代码主要集中在移动端中。UE涉及Subpass的接口和类型如下: ```c++ // 提供给RHI的Subpass标记. enum class ESubpassHint : uint8 { None, // 传统渲染(非Subpass) DepthReadSubpass, // 深度读取Subpass. DeferredShadingSubpass, // 移动端延迟着色Subpass. }; // Engine\Source\Runtime\RHI\Public\RHICommandList.h class RHI_API FRHICommandListBase : public FNoncopyable { (......) protected: // PSO上下文. struct FPSOContext { uint32 CachedNumSimultanousRenderTargets = 0; TStaticArray CachedRenderTargets; FRHIDepthRenderTargetView CachedDepthStencilTarget; // Subpass提示标记. ESubpassHint SubpassHint = ESubpassHint::None; uint8 SubpassIndex = 0; uint8 MultiViewCount = 0; bool HasFragmentDensityAttachment = false; } PSOContext; }; class RHI_API FRHICommandList : public FRHIComputeCommandList { public: void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name) { (......) CacheActiveRenderTargets(InInfo); // 设置Subpass数据. ResetSubpass(InInfo.SubpassHint); Data.bInsideRenderPass = true; } void EndRenderPass() { (......) // 重置Subpass标记为None. ResetSubpass(ESubpassHint::None); } // 下一个Subpass. void NextSubpass() { // 分配或调用RHI接口. if (Bypass()) { GetContext().RHINextSubpass(); } else { ALLOC_COMMAND(FRHICommandNextSubpass)(); } // 增加Subpass计数. IncrementSubpass(); } // 增加subpass计数. void IncrementSubpass() { PSOContext.SubpassIndex++; } // 重置Subpass数据. void ResetSubpass(ESubpassHint SubpassHint) { PSOContext.SubpassHint = SubpassHint; PSOContext.SubpassIndex = 0; } }; ```