21 KiB
21 KiB
title, date, excerpt, tags, rating
title | date | excerpt | tags | rating |
---|---|---|---|---|
ToonReflection | 2025-03-20 17:04:16 | ⭐ |
反射功能相关Pass
- ReflectionIndirect(None)
- DiffuseIndirectAndAO(Lumen/SSR)
- LumenReflections
ReflectionEnvironmentAndSky
位于IndirectLightRendering.cpp的RenderDeferredReflectionsAndSkyLighting() => AddSkyReflectionPass()
当DiffuseIndirectMethod = EDiffuseIndirectMethod::Lumen
(也就是开启Lumen GI),如果反射方法为Lumen或者SSR则不会执行后续逻辑。
不开启Lumen GI,反射方法为:
- Lumen:
RenderLumenReflections()
- RT Reflection:
RenderRayTracingReflections()
- SSR:
ScreenSpaceRayTracing::RenderScreenSpaceReflections()
RenderDeferredReflectionsAndSkyLighting()
主要执行了:
- SkyLightDiffuse
- RenderDistanceFieldLighting()
- RenderDistanceFieldAOScreenGrid():渲染距离场AO。
- RenderCapsuleShadowsForMovableSkylight():渲染胶囊阴影。
- RenderDistanceFieldLighting()
- ReflectionIndirect
- RenderLumenReflections()
- RenderRayTracingReflections()
- RenderScreenSpaceReflections()
- Denoise
- Denoiser:IScreenSpaceDenoiser::DenoiseReflections()
- TemporalFilter:AddTemporalAAPass()
- RenderDeferredPlanarReflections():合成平面反射结果。
- AddSkyReflectionPass()
几种反射方式的大致执行逻辑:
- LumenReflection
- 输出FRDGTextureRef ReflectionsColor。
- SSR与RT
- 输出结果到IScreenSpaceDenoiser::FReflectionsInputs DenoiserInputs的FRDGTextureRef Color。
- 执行对应的降噪算法。
- 结果赋予给FRDGTextureRef ReflectionsColor。
- 执行完上述反射方法后,最后执行
AddSkyReflectionPass()
FReflectionEnvironmentSkyLightingPS位于/Engine/Private/ReflectionEnvironmentPixelShader.usf的ReflectionEnvironmentSkyLighting()
。
ReflectionEnvironmentSkyLighting
void ReflectionEnvironmentSkyLighting(
in float4 SvPosition : SV_Position,
out float4 OutColor : SV_Target0
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED
, out float3 OutOpaqueRoughRefractionSceneColor : SV_Target1
, out float3 OutSubSurfaceSceneColor : SV_Target2
#endif
)
{
ResolvedView = ResolveView();
//计算获去BufferUV、ScreenPosition
uint2 PixelPos = SvPosition.xy;
float2 BufferUV = SvPositionToBufferUV(SvPosition);
float2 ScreenPosition = SvPositionToScreenPosition(SvPosition).xy;
OutColor = 0.0f;
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED
OutOpaqueRoughRefractionSceneColor = 0.0f;
OutSubSurfaceSceneColor = 0.0f;
#endif
#if STRATA_ENABLED
...
...
#else // STRATA_ENABLED
// Sample scene textures.
FGBufferData GBuffer = GetGBufferDataFromSceneTextures(BufferUV);
uint ShadingModelID = GBuffer.ShadingModelID;
const bool bUnlitMaterial = ShadingModelID == SHADINGMODELID_UNLIT;
float3 DiffuseColor = GBuffer.DiffuseColor;
float3 SpecularColor = GBuffer.SpecularColor;
RemapClearCoatDiffuseAndSpecularColor(GBuffer, ScreenPosition, DiffuseColor, SpecularColor);//针对清漆材质进行Diffuse颜色与Specular颜色重新映射
// Sample the ambient occlusion that is dynamically generated every frame.
float AmbientOcclusion = AmbientOcclusionTexture.SampleLevel(AmbientOcclusionSampler, BufferUV, 0).r;
float3 BentNormal = GBuffer.WorldNormal;
#if APPLY_SKY_SHADOWING
{
BentNormal = UpsampleDFAO(BufferUV, GBuffer.Depth, GBuffer.WorldNormal);
}
#endif
#if ENABLE_DYNAMIC_SKY_LIGHT
BRANCH
if (!bUnlitMaterial) // Only light pixels marked as lit //Unlit材质不会计算动态天光GI的效果。
{
float3 TranslatedWorldPosition = mul(float4(GetScreenPositionForProjectionType(ScreenPosition, GBuffer.Depth), GBuffer.Depth, 1), View.ScreenToTranslatedWorld).xyz;
const float CloudVolumetricAOShadow = GetCloudVolumetricAOShadow(TranslatedWorldPosition);//从体积云 VolumetricCloudShadowMapTexture中取得ShadowFrontDepthKm、MaxOpticalDepth,MeanExtinction,最终计算出体积云阴影。UE5.3该函数没有启用。
float3 SkyLighting = CloudVolumetricAOShadow * SkyLightDiffuse(GBuffer, AmbientOcclusion, BufferUV, ScreenPosition, BentNormal, DiffuseColor);
FLightAccumulator LightAccumulator = (FLightAccumulator)0;
const bool bNeedsSeparateSubsurfaceLightAccumulation = UseSubsurfaceProfile(ShadingModelID);
LightAccumulator_Add(LightAccumulator, SkyLighting, SkyLighting, 1.0f, bNeedsSeparateSubsurfaceLightAccumulation);
OutColor = LightAccumulator_GetResult(LightAccumulator);
}
#endif // ENABLE_DYNAMIC_SKY_LIGHT
BRANCH
if (!bUnlitMaterial && ShadingModelID != SHADINGMODELID_HAIR)//
{
OutColor.xyz += ReflectionEnvironment(GBuffer, AmbientOcclusion, BufferUV, ScreenPosition, SvPosition, BentNormal, SpecularColor, ShadingModelID);
}
#endif // STRATA_ENABLED
}
SkyLightDiffuse
- 计算float3 SkyLightingNormal、FSkyLightVisibilityData SkyVisData。
- 计算Normal、ViewVector、NoV。
- 针对制定ShadingModel进行额外计算:
- SHADINGMODELID_TWOSIDED_FOLIAGE:使用Normal反向量取得SkySHDiffuse,在乘以SubsurfaceColor、SkyVisData.SkyDiffuseLookUpMul后累加到结果上。
- SHADINGMODELID_SUBSURFACE、SHADINGMODELID_PREINTEGRATED_SKIN:从GBuffer中提取SubsurfaceColor并累加到结果上。
- SHADINGMODELID_CLOTH:从GBuffer中提取ClothFuzz(SubsurfaceColor)乘以CustomData.a,并累加到结果上。
- SHADINGMODELID_HAIR:
- DiffuseColor = EvaluateEnvHair(GBuffer, V, N, L);
- SkyVisData.SkyDiffuseLookUpNormal = L;
- DiffuseWeight = 1.0f;
- 调用GetSkySHDiffuse()计算天光光照效果。GetSkySHDiffuse()本质是采样球谐贴图,来获得天光GI结果。
ReflectionEnvironment
float3 ReflectionEnvironment(FGBufferData GBuffer, float AmbientOcclusion, float2 BufferUV, float2 ScreenPosition, float4 SvPosition, float3 BentNormal, float3 SpecularColor, uint ShadingModelID)
{
float4 Color = float4(0, 0, 0, 1);
float IndirectIrradiance = GBuffer.IndirectIrradiance;
#if ENABLE_SKY_LIGHT && ALLOW_STATIC_LIGHTING
BRANCH
// Add in diffuse contribution from dynamic skylights so reflection captures will have something to mix with
if (ReflectionStruct.SkyLightParameters.y > 0 && ReflectionStruct.SkyLightParameters.z > 0)
{
//如果开启天光、并且开启静态关照。会在这里采样SkySH,以此累加间接照明。
IndirectIrradiance += GetDynamicSkyIndirectIrradiance(BentNormal, GBuffer.WorldNormal);
}
#endif
//计算反射Vector、WorldNormal、ViewVector
float3 TranslatedWorldPosition = mul(float4(GetScreenPositionForProjectionType(ScreenPosition, GBuffer.Depth), GBuffer.Depth, 1), View.ScreenToTranslatedWorld).xyz;
float3 CameraToPixel = normalize(TranslatedWorldPosition - View.TranslatedWorldCameraOrigin);
float3 ReflectionVector = reflect(CameraToPixel, GBuffer.WorldNormal);
float3 V = -CameraToPixel;
float3 N = GBuffer.WorldNormal;
const float3 SavedTopLayerNormal = N;
#if SUPPORTS_ANISOTROPIC_MATERIALS
ModifyGGXAnisotropicNormalRoughness(GBuffer.WorldTangent, GBuffer.Anisotropy, GBuffer.Roughness, N, V);
#endif
float3 R = 2 * dot( V, N ) * N - V;
float NoV = saturate( dot( N, V ) );
// Point lobe in off-specular peak direction
R = GetOffSpecularPeakReflectionDir(N, R, GBuffer.Roughness);
// 采样 SSR, planar reflections, RT reflections or Lumen 反射结果。
float4 ReflectionInput = Texture2DSample(ReflectionTexture, ReflectionTextureSampler, BufferUV);
Color = CompositeReflections(ReflectionInput, BufferUV, GBuffer.Roughness, ShadingModelID);//Color = float4(ReflectionInput.rgb, 1 - ReflectionInput.a)
#if RAY_TRACED_REFLECTIONS
float4 SavedColor = Color; // When a clear coat material is encountered, we save the reflection buffer color for it to not be affected by operations.
#endif
if(GBuffer.ShadingModelID == SHADINGMODELID_CLEAR_COAT )
{
#if RAY_TRACED_REFLECTIONS
Color = float4(0, 0, 0, 1); // Clear coat reflection is expected to be computed on a black background
#endif
const float ClearCoat = GBuffer.CustomData.x;
Color = lerp( Color, float4(0,0,0,1), ClearCoat );
#if CLEAR_COAT_BOTTOM_NORMAL
const float2 oct1 = ((float2(GBuffer.CustomData.a, GBuffer.CustomData.z) * 4) - (512.0/255.0)) + UnitVectorToOctahedron(GBuffer.WorldNormal);
const float3 ClearCoatUnderNormal = OctahedronToUnitVector(oct1);
const float3 BottomEffectiveNormal = ClearCoatUnderNormal;
R = 2 * dot( V, ClearCoatUnderNormal ) * ClearCoatUnderNormal - V;
#endif
}
float AO = GBuffer.GBufferAO * AmbientOcclusion;//AmbientOcclusion为SSAO或者RTAO或者DFAO或者Lumen……
float RoughnessSq = GBuffer.Roughness * GBuffer.Roughness;
float SpecularOcclusion = GetSpecularOcclusion(NoV, RoughnessSq, AO);
Color.a *= SpecularOcclusion;
#if FEATURE_LEVEL >= FEATURE_LEVEL_SM5
float2 LocalPosition = SvPosition.xy - View.ViewRectMin.xy;
uint GridIndex = ComputeLightGridCellIndex(uint2(LocalPosition.x, LocalPosition.y), GBuffer.Depth);
uint NumCulledEntryIndex = (ForwardLightData.NumGridCells + GridIndex) * NUM_CULLED_LIGHTS_GRID_STRIDE;
uint NumCulledReflectionCaptures = min(ForwardLightData.NumCulledLightsGrid[NumCulledEntryIndex + 0], ForwardLightData.NumReflectionCaptures);
uint DataStartIndex = ForwardLightData.NumCulledLightsGrid[NumCulledEntryIndex + 1];
#else
uint DataStartIndex = 0;
uint NumCulledReflectionCaptures = 0;
#endif
const FBxDFEnergyTerms EnergyTerms = ComputeGGXSpecEnergyTerms(GBuffer.Roughness, NoV, GBuffer.SpecularColor);
//常规反射 或 底层清漆 光照计算
//Top of regular reflection or bottom layer of clear coat.
Color.rgb += View.PreExposure * GatherRadiance(Color.a, TranslatedWorldPosition, R, GBuffer.Roughness, BentNormal, IndirectIrradiance, GBuffer.ShadingModelID, NumCulledReflectionCaptures, DataStartIndex);
BRANCH
if( GBuffer.ShadingModelID == SHADINGMODELID_CLEAR_COAT)
{
const float ClearCoat = GBuffer.CustomData.x;
const float ClearCoatRoughness = GBuffer.CustomData.y;
// Restore saved values needed for the top layer.
GBuffer.WorldNormal = SavedTopLayerNormal;
// Recompute some values unaffected by anistropy for the top layer
N = GBuffer.WorldNormal;
R = 2 * dot(V, N) * N - V;
NoV = saturate(dot(N, V));
R = GetOffSpecularPeakReflectionDir(N, R, ClearCoatRoughness);
// TODO EnvBRDF should have a mask param
#if USE_ENERGY_CONSERVATION
Color.rgb *= EnergyTerms.E * (1 - ClearCoat);
#else
// Hack: Ensures when clear coat is >0, grazing angle does not get too much energy,
// but preserve response at normal incidence
float2 AB = PreIntegratedGF.SampleLevel(PreIntegratedGFSampler, float2(NoV, GBuffer.Roughness), 0).rg;
Color.rgb *= SpecularColor * AB.x + AB.y * saturate(50 * SpecularColor.g) * (1 - ClearCoat);
#endif
// F_Schlick
const float CoatF0 = 0.04f;
#if USE_ENERGY_CONSERVATION
float F = ComputeGGXSpecEnergyTerms(ClearCoatRoughness, NoV, CoatF0).E.x;
#else
float F = EnvBRDF(CoatF0, ClearCoatRoughness, NoV).x;
#endif
F *= ClearCoat;
float LayerAttenuation = (1 - F);
Color.rgb *= LayerAttenuation;
Color.a = F;
#if !RAY_TRACED_REFLECTIONS
Color.rgb += ReflectionInput.rgb * F;
Color.a *= 1 - ReflectionInput.a;
#endif
Color.a *= SpecularOcclusion;
float3 TopLayerR = 2 * dot( V, N ) * N - V;
Color.rgb += View.PreExposure * GatherRadiance(Color.a, TranslatedWorldPosition, TopLayerR, ClearCoatRoughness, BentNormal, IndirectIrradiance, GBuffer.ShadingModelID, NumCulledReflectionCaptures, DataStartIndex);
#if RAY_TRACED_REFLECTIONS
Color.rgb = SavedColor.rgb + Color.rgb * SavedColor.a; // Compose default clear coat reflection over regular refelction (using Premultiplied alpha where SaveColor.a=transmittance)
#endif
}
else
{
#if USE_ENERGY_CONSERVATION
Color.rgb *= EnergyTerms.E;
#else
Color.rgb *= EnvBRDF( SpecularColor, GBuffer.Roughness, NoV );
#endif
}
// Transform NaNs to black, transform negative colors to black.
return -min(-Color.rgb, 0.0);
}
GatherRadiance()
float3 GatherRadiance(float CompositeAlpha, float3 TranslatedWorldPosition, float3 RayDirection, float Roughness, float3 BentNormal, float IndirectIrradiance, uint ShadingModelID, uint NumCulledReflectionCaptures, uint CaptureDataStartIndex)
{
// Indirect occlusion from DFAO, which should be applied to reflection captures and skylight specular, but not SSR
float IndirectSpecularOcclusion = 1.0f;
float3 ExtraIndirectSpecular = 0;
#if SUPPORT_DFAO_INDIRECT_OCCLUSION
float IndirectDiffuseOcclusion;
GetDistanceFieldAOSpecularOcclusion(BentNormal, RayDirection, Roughness, ShadingModelID == SHADINGMODELID_TWOSIDED_FOLIAGE, IndirectSpecularOcclusion, IndirectDiffuseOcclusion, ExtraIndirectSpecular);
// Apply DFAO to IndirectIrradiance before mixing with indirect specular
IndirectIrradiance *= IndirectDiffuseOcclusion;
#endif
const bool bCompositeSkylight = true;
return CompositeReflectionCapturesAndSkylightTWS(
CompositeAlpha,
TranslatedWorldPosition,
RayDirection,
Roughness,
IndirectIrradiance,
IndirectSpecularOcclusion,
ExtraIndirectSpecular,
NumCulledReflectionCaptures,
CaptureDataStartIndex,
0,
bCompositeSkylight);
}
float3 CompositeReflectionCapturesAndSkylightTWS(
float CompositeAlpha,
float3 TranslatedWorldPosition,
float3 RayDirection,
float Roughness,
float IndirectIrradiance,
float IndirectSpecularOcclusion,
float3 ExtraIndirectSpecular,
uint NumCapturesAffectingTile,
uint CaptureDataStartIndex,
int SingleCaptureIndex,
bool bCompositeSkylight,
uint EyeIndex)
{
float Mip = ComputeReflectionCaptureMipFromRoughness(Roughness, View.ReflectionCubemapMaxMip);
float4 ImageBasedReflections = float4(0, 0, 0, CompositeAlpha);
float2 CompositedAverageBrightness = float2(0.0f, 1.0f);
#if REFLECTION_COMPOSITE_USE_BLENDED_REFLECTION_CAPTURES
// Accumulate reflections from captures affecting this tile, applying largest captures first so that the smallest ones display on top
LOOP
for (uint TileCaptureIndex = 0; TileCaptureIndex < NumCapturesAffectingTile; TileCaptureIndex++)
{
BRANCH
if (ImageBasedReflections.a < 0.001)
{
break;
}
uint CaptureIndex = 0;
#ifdef REFLECTION_COMPOSITE_NO_CULLING_DATA
CaptureIndex = TileCaptureIndex; // Go from 0 to NumCapturesAffectingTile as absolute index in capture array
#else
#if (INSTANCED_STEREO || MOBILE_MULTI_VIEW)
BRANCH
if (EyeIndex == 0)
{
#endif
CaptureIndex = GetCulledLightDataGrid(CaptureDataStartIndex + TileCaptureIndex);
#if (INSTANCED_STEREO || MOBILE_MULTI_VIEW)
}
else
{
CaptureIndex = GetCulledLightDataGridISR(CaptureDataStartIndex + TileCaptureIndex);
}
#endif
#endif
FLWCVector3 CaptureWorldPosition = MakeLWCVector3(GetReflectionTilePosition(CaptureIndex).xyz, GetReflectionPositionAndRadius(CaptureIndex).xyz);
float3 CaptureTranslatedWorldPosition = LWCToFloat(LWCAdd(CaptureWorldPosition, ResolvedView.PreViewTranslation));
float CaptureRadius = GetReflectionPositionAndRadius(CaptureIndex).w;
float4 CaptureProperties = GetReflectionCaptureProperties(CaptureIndex);
float3 CaptureVector = TranslatedWorldPosition - CaptureTranslatedWorldPosition;
float CaptureVectorLength = sqrt(dot(CaptureVector, CaptureVector));
float NormalizedDistanceToCapture = saturate(CaptureVectorLength / CaptureRadius);
BRANCH
if (CaptureVectorLength < CaptureRadius)
{
float3 ProjectedCaptureVector = RayDirection;
float4 CaptureOffsetAndAverageBrightness = GetReflectionCaptureOffsetAndAverageBrightness(CaptureIndex);
// Fade out based on distance to capture
float DistanceAlpha = 0;
#define PROJECT_ONTO_SHAPE 1
#if PROJECT_ONTO_SHAPE
#if REFLECTION_COMPOSITE_HAS_BOX_CAPTURES
#if REFLECTION_COMPOSITE_HAS_SPHERE_CAPTURES
// Box
BRANCH if (CaptureProperties.b > 0)
#endif
{
ProjectedCaptureVector = GetLookupVectorForBoxCapture(RayDirection, TranslatedWorldPosition, float4(CaptureTranslatedWorldPosition, CaptureRadius),
GetReflectionBoxTransform(CaptureIndex), GetReflectionBoxScales(CaptureIndex), CaptureOffsetAndAverageBrightness.xyz, DistanceAlpha);
}
#endif
#if REFLECTION_COMPOSITE_HAS_SPHERE_CAPTURES
// Sphere
#if REFLECTION_COMPOSITE_HAS_BOX_CAPTURES
else
#endif
{
ProjectedCaptureVector = GetLookupVectorForSphereCapture(RayDirection, TranslatedWorldPosition, float4(CaptureTranslatedWorldPosition, CaptureRadius), NormalizedDistanceToCapture, CaptureOffsetAndAverageBrightness.xyz, DistanceAlpha);
}
#endif
#else
DistanceAlpha = 1.0;
#endif //PROJECT_ONTO_SHAPE
float CaptureArrayIndex = CaptureProperties.g;
{
float4 Sample = ReflectionStruct.ReflectionCubemap.SampleLevel(ReflectionStruct.ReflectionCubemapSampler, float4(ProjectedCaptureVector, CaptureArrayIndex), Mip);
Sample.rgb *= CaptureProperties.r;
Sample *= DistanceAlpha;
// Under operator (back to front)
ImageBasedReflections.rgb += Sample.rgb * ImageBasedReflections.a * IndirectSpecularOcclusion;
ImageBasedReflections.a *= 1 - Sample.a;
float AverageBrightness = CaptureOffsetAndAverageBrightness.w;
CompositedAverageBrightness.x += AverageBrightness * DistanceAlpha * CompositedAverageBrightness.y;
CompositedAverageBrightness.y *= 1 - DistanceAlpha;
}
}
}
#else
float3 ProjectedCaptureVector = RayDirection;
FLWCVector3 SingleCaptureWorldPosition = MakeLWCVector3(GetReflectionTilePosition(SingleCaptureIndex).xyz, GetReflectionPositionAndRadius(SingleCaptureIndex).xyz);
float3 SingleCaptureTranslatedWorldPosition = LWCToFloat(LWCAdd(SingleCaptureWorldPosition, ResolvedView.PreViewTranslation));
float SingleCaptureRadius = GetReflectionPositionAndRadius(SingleCaptureIndex).w;
float4 SingleCaptureOffsetAndAverageBrightness = GetReflectionCaptureOffsetAndAverageBrightness(SingleCaptureIndex);
float SingleCaptureBrightness = GetReflectionCaptureProperties(SingleCaptureIndex).x;
float SingleCaptureArrayIndex = GetReflectionCaptureProperties(SingleCaptureIndex).y;
#define APPROXIMATE_CONTINUOUS_SINGLE_CAPTURE_PARALLAX 0
#if APPROXIMATE_CONTINUOUS_SINGLE_CAPTURE_PARALLAX
float3 CaptureVector = TranslatedWorldPosition - SingleCaptureTranslatedWorldPosition;
float CaptureVectorLength = sqrt(dot(CaptureVector, CaptureVector));
float NormalizedDistanceToCapture = saturate(CaptureVectorLength / SingleCaptureRadius);
float UnusedDistanceAlpha = 0;
ProjectedCaptureVector = GetLookupVectorForSphereCapture(RayDirection, TranslatedWorldPosition, float4(SingleCaptureTranslatedWorldPosition, SingleCaptureRadius), NormalizedDistanceToCapture, SingleCaptureOffsetAndAverageBrightness.xyz, UnusedDistanceAlpha);
float x = saturate(NormalizedDistanceToCapture);
float DistanceAlpha = 1 - x * x * (3 - 2 * x);
// Lerp between sphere parallax corrected and infinite based on distance to shape
ProjectedCaptureVector = lerp(RayDirection, normalize(ProjectedCaptureVector), DistanceAlpha);
#endif
float4 Sample = TextureCubeArraySampleLevel(ReflectionStruct.ReflectionCubemap, ReflectionStruct.ReflectionCubemapSampler, ProjectedCaptureVector, SingleCaptureArrayIndex, Mip);
Sample.rgb *= SingleCaptureBrightness;
ImageBasedReflections = float4(Sample.rgb, 1 - Sample.a);
float AverageBrightness = SingleCaptureOffsetAndAverageBrightness.w;
CompositedAverageBrightness.x += AverageBrightness * CompositedAverageBrightness.y;
CompositedAverageBrightness.y = 0;
#endif
// Apply indirect lighting scale while we have only accumulated reflection captures
ImageBasedReflections.rgb *= View.PrecomputedIndirectSpecularColorScale;
CompositedAverageBrightness.x *= Luminance( View.PrecomputedIndirectSpecularColorScale );
#if ENABLE_SKY_LIGHT
BRANCH
if (ReflectionStruct.SkyLightParameters.y > 0 && bCompositeSkylight)
{
float SkyAverageBrightness = 1.0f;
#if REFLECTION_COMPOSITE_SUPPORT_SKYLIGHT_BLEND
float3 SkyLighting = GetSkyLightReflectionSupportingBlend(RayDirection, Roughness, SkyAverageBrightness);
#else
float3 SkyLighting = GetSkyLightReflection(RayDirection, Roughness, SkyAverageBrightness);
#endif
// Normalize for static skylight types which mix with lightmaps, material ambient occlusion as well as diffuse/specular occlusion.
bool bNormalize = ReflectionStruct.SkyLightParameters.z < 1 && ALLOW_STATIC_LIGHTING;
FLATTEN
if (bNormalize)
{
ImageBasedReflections.rgb += ImageBasedReflections.a * SkyLighting * IndirectSpecularOcclusion;
CompositedAverageBrightness.x += SkyAverageBrightness * CompositedAverageBrightness.y;
}
else
{
ExtraIndirectSpecular += SkyLighting * IndirectSpecularOcclusion;
}
}
#endif
#if ALLOW_STATIC_LIGHTING
ImageBasedReflections.rgb *= ComputeMixingWeight(IndirectIrradiance, CompositedAverageBrightness.x, Roughness);
#endif
ImageBasedReflections.rgb += ImageBasedReflections.a * ExtraIndirectSpecular;
return ImageBasedReflections.rgb;
}
DiffuseIndirectComposite
位于IndirectLightRendering.cpp的RenderDiffuseIndirectAndAmbientOcclusion()