67 KiB
title, date, excerpt, tags, rating
title | date | excerpt | tags | rating |
---|---|---|---|---|
剖析虚幻渲染体系(08)- Shader体系 | 2024-02-04 21:44:10 | ⭐ |
前言
原文地址:https://www.cnblogs.com/timlly/p/15092257.html
FShader
class FShader
{
public:
// 在编译触发之前修改编译环境参数, 可由子类覆盖.
static void ModifyCompilationEnvironment(const FShaderPermutationParameters&, FShaderCompilerEnvironment&) {}
// 是否需要编译指定的排列, 可由子类覆盖.
static bool ShouldCompilePermutation(const FShaderPermutationParameters&) { return true; }
// 检测编译结果是否有效, 可由子类覆盖.
static bool ValidateCompiledResult(EShaderPlatform InPlatform, const FShaderParameterMap& InParameterMap, TArray<FString>& OutError) { return true; }
// 取得RayTracingPayloadType
static ERayTracingPayloadType GetRayTracingPayloadType(const int32 PermutationId) { return static_cast<ERayTracingPayloadType>(0); }
// 获取各类数据的Hash的接口.
RENDERCORE_API const FSHAHash& GetHash() const;
RENDERCORE_API const FSHAHash& GetVertexFactoryHash() const;
RENDERCORE_API const FSHAHash& GetOutputHash() const;
/** Returns an identifier suitable for deterministic sorting of shaders between sessions. */
uint32 GetSortKey() const { return SortKey; }
// 保存并检测shader代码的编译结果.
RENDERCORE_API void Finalize(const FShaderMapResourceCode* Code);
// 数据获取接口.
inline FShaderType* GetType(const FShaderMapPointerTable& InPointerTable) const { return Type.Get(InPointerTable.ShaderTypes); }
inline FShaderType* GetType(const FPointerTableBase* InPointerTable) const { return Type.Get(InPointerTable); }
inline FVertexFactoryType* GetVertexFactoryType(const FShaderMapPointerTable& InPointerTable) const { return VFType.Get(InPointerTable.VFTypes); }
inline FVertexFactoryType* GetVertexFactoryType(const FPointerTableBase* InPointerTable) const { return VFType.Get(InPointerTable); }
inline FShaderType* GetTypeUnfrozen() const { return Type.GetUnfrozen(); }
inline int32 GetResourceIndex() const { checkSlow(ResourceIndex != INDEX_NONE); return ResourceIndex; }
inline EShaderPlatform GetShaderPlatform() const { return Target.GetPlatform(); }
inline EShaderFrequency GetFrequency() const { return Target.GetFrequency(); }
inline const FShaderTarget GetTarget() const { return Target; }
inline bool IsFrozen() const { return Type.IsFrozen(); }
inline uint32 GetNumInstructions() const { return NumInstructions; }
#if WITH_EDITORONLY_DATA
inline uint32 GetNumTextureSamplers() const { return NumTextureSamplers; }
inline uint32 GetCodeSize() const { return CodeSize; }
inline void SetNumInstructions(uint32 Value) { NumInstructions = Value; }
#else
inline uint32 GetNumTextureSamplers() const { return 0u; }
inline uint32 GetCodeSize() const { return 0u; }
#endif
// 尝试返回匹配指定类型的自动绑定的Uniform Buffer, 如果不存在则返回未绑定的.
template<typename UniformBufferStructType>
FORCEINLINE_DEBUGGABLE const TShaderUniformBufferParameter<UniformBufferStructType>& GetUniformBufferParameter() const
{
const FShaderUniformBufferParameter& FoundParameter = GetUniformBufferParameter(UniformBufferStructType::FTypeInfo::GetStructMetadata());
return static_cast<const TShaderUniformBufferParameter<UniformBufferStructType>&>(FoundParameter);
}
FORCEINLINE_DEBUGGABLE const FShaderUniformBufferParameter& GetUniformBufferParameter(const FShaderParametersMetadata* SearchStruct) const
{
const FHashedName SearchName = SearchStruct->GetShaderVariableHashedName();
return GetUniformBufferParameter(SearchName);
}
FORCEINLINE_DEBUGGABLE const FShaderUniformBufferParameter& GetUniformBufferParameter(const FHashedName SearchName) const
{
int32 FoundIndex = INDEX_NONE;
TArrayView<const FHashedName> UniformBufferParameterStructsView(UniformBufferParameterStructs);
for (int32 StructIndex = 0, Count = UniformBufferParameterStructsView.Num(); StructIndex < Count; StructIndex++)
{
if (UniformBufferParameterStructsView[StructIndex] == SearchName)
{
FoundIndex = StructIndex;
break;
}
}
if (FoundIndex != INDEX_NONE)
{
const FShaderUniformBufferParameter& FoundParameter = UniformBufferParameters[FoundIndex];
return FoundParameter;
}
else
{
// This can happen if the uniform buffer was not bound
// There's no good way to distinguish not being bound due to temporary debugging / compiler optimizations or an actual code bug,
// Hence failing silently instead of an error message
static FShaderUniformBufferParameter UnboundParameter;
return UnboundParameter;
}
}
RENDERCORE_API const FShaderParametersMetadata* FindAutomaticallyBoundUniformBufferStruct(int32 BaseIndex) const;
RENDERCORE_API void DumpDebugInfo(const FShaderMapPointerTable& InPtrTable);
#if WITH_EDITOR
RENDERCORE_API void SaveShaderStableKeys(const FShaderMapPointerTable& InPtrTable, EShaderPlatform TargetShaderPlatform, int32 PermutationId, const struct FStableShaderKeyAndValue& SaveKeyVal);
#endif // WITH_EDITOR
/** Returns the meta data for the root shader parameter struct. */
static inline const FShaderParametersMetadata* GetRootParametersMetadata()
{
return nullptr;
}
private:
RENDERCORE_API void BuildParameterMapInfo(const TMap<FString, FParameterAllocation>& ParameterMap);
public:
// 着色器参数绑定.
LAYOUT_FIELD(FShaderParameterBindings, Bindings);
// 着色器参数绑定的映射信息.
LAYOUT_FIELD(FShaderParameterMapInfo, ParameterMapInfo);
protected:
LAYOUT_FIELD(TMemoryImageArray<FHashedName>, UniformBufferParameterStructs);
LAYOUT_FIELD(TMemoryImageArray<FShaderUniformBufferParameter>, UniformBufferParameters);
// 下面3个是编辑器参数.
// 着色器的编译输出和结果参数映射的哈希值, 用于查找匹配的资源.
LAYOUT_FIELD_EDITORONLY(FSHAHash, OutputHash);
// 顶点工厂资源哈希值
LAYOUT_FIELD_EDITORONLY(FSHAHash, VFSourceHash);
// Shader资源哈希值.
LAYOUT_FIELD_EDITORONLY(FSHAHash, SourceHash);
private:
// 着色器类型.
LAYOUT_FIELD(TIndexedPtr<FShaderType>, Type);
// 顶点工厂类型.
LAYOUT_FIELD(TIndexedPtr<FVertexFactoryType>, VFType);
// 目标平台和着色频率(frequency).
LAYOUT_FIELD(FShaderTarget, Target);
// 在FShaderMapResource的shader索引.
LAYOUT_FIELD(int32, ResourceIndex);
// shader指令数.
LAYOUT_FIELD(uint32, NumInstructions);
/** Truncated version of OutputHash, intended for sorting. Not suitable for unique shader identification. */
LAYOUT_FIELD(uint32, SortKey);
// 纹理采样器数量.
LAYOUT_FIELD_EDITORONLY(uint32, NumTextureSamplers);
// shader代码尺寸.
LAYOUT_FIELD_EDITORONLY(uint32, CodeSize);
};
以上可知,FShader存储着Shader关联的绑定参数、顶点工厂、编译后的各类资源等数据,并提供了编译器修改和检测接口,还有各类数据获取接口。
FShader实际上是个基础父类,它的子类有:
- FGlobalShader:全局着色器,它的子类在内存中只有唯一的实例,常用于屏幕方块绘制、后处理等。相比父类FShader,增加了SetParameters设置视图统一缓冲的接口。FGlobalShader包含了后处理、光照、工具类、可视化、地形、虚拟纹理等方面的Shader代码,可以是VS、PS、CS,但CS必然是FGlobalShader的子类
- FMaterialShader:材质着色器,由FMaterialShaderType指定的材质引用的着色器,是材质蓝图在实例化后的一个shader子集。FMaterialShader主要包含了模型、专用Pass、体素化等方面的Shader代码,可以是VS、PS、GS等,但不会有CS。
Shader Parameter
位于Engine\Source\Runtime\RenderCore\Public\ShaderParameters.h
。
- FShaderParameter:着色器的寄存器绑定参数, 它的类型可以是float1/2/3/4,数组等。
- FShaderResourceParameter:着色器资源绑定(纹理或采样器)。
- FRWShaderParameter:绑定了UAV或SRV资源的类型。
- FShaderUniformBufferParameter:着色器统一缓冲参数。
Uniform Buffer
位于Engine\Source\Runtime\RHI\Public\RHIResources.h
。
UE的Uniform Buffer涉及了几个核心的概念,最底层的是RHI层的FRHIUniformBuffer,封装了各种图形API的统一缓冲区(也叫Constant Buffer)。
class FRHIUniformBuffer : public FRHIResource
{
public:
// 构造函数.
FRHIUniformBuffer(const FRHIUniformBufferLayout& InLayout);
// 引用计数操作.
uint32 AddRef() const;
uint32 Release() const;
// 数据获取接口.
uint32 GetSize() const;
const FRHIUniformBufferLayout& GetLayout() const;
bool IsGlobal() const;
private:
// RHI Uniform Buffer的布局.
const FRHIUniformBufferLayout* Layout;
// 缓冲区尺寸.
uint32 LayoutConstantBufferSize;
};
// 定义FRHIUniformBuffer的引用类型.
typedef TRefCountPtr<FRHIUniformBuffer> FUniformBufferRHIRef;
// Engine\Source\Runtime\RenderCore\Public\ShaderParameterMacros.h
// 引用了指定类型的FRHIUniformBuffer的实例资源. 注意是继承了FUniformBufferRHIRef.
template<typename TBufferStruct>
class TUniformBufferRef : public FUniformBufferRHIRef
{
public:
TUniformBufferRef();
// 根据给定的值创建Uniform Buffer, 并返回结构体引用. (模板)
static TUniformBufferRef<TBufferStruct> CreateUniformBufferImmediate(const TBufferStruct& Value, EUniformBufferUsage Usage, EUniformBufferValidation Validation = EUniformBufferValidation::ValidateResources);
// 根据给定的值创建[局部]的Uniform Buffer, 并返回结构体引用.
static FLocalUniformBuffer CreateLocalUniformBuffer(FRHICommandList& RHICmdList, const TBufferStruct& Value, EUniformBufferUsage Usage);
// 立即刷新缓冲区数据到RHI.
void UpdateUniformBufferImmediate(const TBufferStruct& Value);
private:
// 私有构造体, 只能给TUniformBuffer和TRDGUniformBuffer创建.
TUniformBufferRef(FRHIUniformBuffer* InRHIRef);
template<typename TBufferStruct2>
friend class TUniformBuffer;
friend class TRDGUniformBuffer<TBufferStruct>;
};
最后TUniformBuffer和TRDGUniformBuffer引用了FUniformBufferRHIRef。TUniformBuffer为TUniformBufferRef<TBufferStruct> UniformBufferRHI
成员变量;TRDGUniformBuffer为TRefCountPtr<FRHIUniformBuffer> UniformBufferRHI
。
定义宏
- SHADER_PARAMETER_STRUCT_REF:引用着色器参数结构体(全局的才行)
- SHADER_PARAMETER_STRUCT_INCLUDE:包含着色器参数结构体(局部或全局都行)
Vertex Factory
我们知道,在引擎中存在着静态网格、蒙皮骨骼、程序化网格以及地形等等类型的网格类型,而材质就是通过顶点工厂FVertexFactory来支持这些网格类型。实际上,顶点工厂要涉及各方面的数据和类型,包含但不限于:
- 顶点着色器。顶点着色器的输入输出需要顶点工厂来表明数据的布局。
- 顶点工厂的参数和RHI资源。这些数据将从C++层传入到顶点着色器中进行处理。
- 顶点缓冲和顶点布局。通过顶点布局,我们可以自定义和扩展顶点缓冲的输入,从而实现定制化的Shader代码。
- 几何预处理。顶点缓冲、网格资源、材质参数等等都可以在真正渲染前预处理它们。
!
顶点工厂在渲染层级中的关系。由图可知,顶点工厂是渲染线程的对象,横跨于CPU和GPU两端。
// Engine\Source\Runtime\RHI\Public\RHI.h
// 顶点元素.
struct FVertexElement
{
uint8 StreamIndex; // 流索引
uint8 Offset; // 偏移
TEnumAsByte<EVertexElementType> Type; // 类型
uint8 AttributeIndex;// 属性索引
uint16 Stride; // 步长
// 实例索引或顶点索引是否实例化的, 若是0, 则元素会对每个实例进行重复.
uint16 bUseInstanceIndex;
FVertexElement();
FVertexElement(uint8 InStreamIndex, ...);
void operator=(const FVertexElement& Other);
friend FArchive& operator<<(FArchive& Ar,FVertexElement& Element);
FString ToString() const;
void FromString(const FString& Src);
void FromString(const FStringView& Src);
};
// 顶点声明元素列表的类型.
typedef TArray<FVertexElement,TFixedAllocator<MaxVertexElementCount> > FVertexDeclarationElementList;
// Engine\Source\Runtime\RHI\Public\RHIResources.h
// 顶点声明的RHI资源
class FRHIVertexDeclaration : public FRHIResource
{
public:
virtual bool GetInitializer(FVertexDeclarationElementList& Init) { return false; }
};
// 顶点缓冲区
class FRHIVertexBuffer : public FRHIResource
{
public:
FRHIVertexBuffer(uint32 InSize,uint32 InUsage);
uint32 GetSize() const;
uint32 GetUsage() const;
protected:
FRHIVertexBuffer();
void Swap(FRHIVertexBuffer& Other);
void ReleaseUnderlyingResource();
private:
// 尺寸.
uint32 Size;
// 缓冲区标记, 如BUF_UnorderedAccess
uint32 Usage;
};
// Engine\Source\Runtime\RenderCore\Public\VertexFactory.h
// 顶点输入流.
struct FVertexInputStream
{
// 顶点流索引
uint32 StreamIndex : 4;
// 在VertexBuffer的偏移.
uint32 Offset : 28;
// 顶点缓存区
FRHIVertexBuffer* VertexBuffer;
FVertexInputStream();
FVertexInputStream(uint32 InStreamIndex, uint32 InOffset, FRHIVertexBuffer* InVertexBuffer);
inline bool operator==(const FVertexInputStream& rhs) const;
inline bool operator!=(const FVertexInputStream& rhs) const;
};
// 顶点输入流数组.
typedef TArray<FVertexInputStream, TInlineAllocator<4>> FVertexInputStreamArray;
// 顶点流标记
enum class EVertexStreamUsage : uint8
{
Default = 0 << 0, // 默认
Instancing = 1 << 0, // 实例化
Overridden = 1 << 1, // 覆盖
ManualFetch = 1 << 2 // 手动获取
};
// 顶点输入流类型.
enum class EVertexInputStreamType : uint8
{
Default = 0, // 默认
PositionOnly, // 只有位置
PositionAndNormalOnly // 只有位置和法线
};
// 顶点流组件.
struct FVertexStreamComponent
{
// 流数据的顶点缓冲区, 如果为null, 则不会有数据从此顶点流被读取.
const FVertexBuffer* VertexBuffer = nullptr;
// vertex buffer的偏移.
uint32 StreamOffset = 0;
// 数据的偏移, 相对于顶点缓冲区中每个元素的开头.
uint8 Offset = 0;
// 数据的步长.
uint8 Stride = 0;
// 从流读取的数据类型.
TEnumAsByte<EVertexElementType> Type = VET_None;
// 顶点流标记.
EVertexStreamUsage VertexStreamUsage = EVertexStreamUsage::Default;
(......)
};
// 着色器使用的顶点工厂的参数绑定接口.
class FVertexFactoryShaderParameters
{
public:
// 绑定参数到ParameterMap. 具体逻辑由子类完成.
void Bind(const class FShaderParameterMap& ParameterMap) {}
// 获取顶点工厂的着色器绑定和顶点流. 具体逻辑由子类完成.
void GetElementShaderBindings(
const class FSceneInterface* Scene,
const class FSceneView* View,
const class FMeshMaterialShader* Shader,
const EVertexInputStreamType InputStreamType,
ERHIFeatureLevel::Type FeatureLevel,
const class FVertexFactory* VertexFactory,
const struct FMeshBatchElement& BatchElement,
class FMeshDrawSingleShaderBindings& ShaderBindings,
FVertexInputStreamArray& VertexStreams) const {}
(......)
};
// 用来表示顶点工厂类型的类.
class FVertexFactoryType
{
public:
// 类型定义
typedef FVertexFactoryShaderParameters* (*ConstructParametersType)(EShaderFrequency ShaderFrequency, const class FShaderParameterMap& ParameterMap);
typedef const FTypeLayoutDesc* (*GetParameterTypeLayoutType)(EShaderFrequency ShaderFrequency);
(......)
// 获取顶点工厂类型数量.
static int32 GetNumVertexFactoryTypes();
// 获取全局的着色器工厂列表.
static RENDERCORE_API TLinkedList<FVertexFactoryType*>*& GetTypeList();
// 获取已存的材质类型列表.
static RENDERCORE_API const TArray<FVertexFactoryType*>& GetSortedMaterialTypes();
// 通过名字查找FVertexFactoryType
static RENDERCORE_API FVertexFactoryType* GetVFByName(const FHashedName& VFName);
// 初始化FVertexFactoryType静态成员, 必须在VF类型创建之前调用.
static void Initialize(const TMap<FString, TArray<const TCHAR*> >& ShaderFileToUniformBufferVariables);
static void Uninitialize();
// 构造/析构函数.
RENDERCORE_API FVertexFactoryType(...);
virtual ~FVertexFactoryType();
// 数据获取接口.
const TCHAR* GetName() const;
FName GetFName() const;
const FHashedName& GetHashedName() const;
const TCHAR* GetShaderFilename() const;
// 着色器参数接口.
FVertexFactoryShaderParameters* CreateShaderParameters(...) const;
const FTypeLayoutDesc* GetShaderParameterLayout(...) const;
void GetShaderParameterElementShaderBindings(...) const;
// 标记访问.
bool IsUsedWithMaterials() const;
bool SupportsStaticLighting() const;
bool SupportsDynamicLighting() const;
bool SupportsPrecisePrevWorldPos() const;
bool SupportsPositionOnly() const;
bool SupportsCachingMeshDrawCommands() const;
bool SupportsPrimitiveIdStream() const;
// 获取哈希.
friend uint32 GetTypeHash(const FVertexFactoryType* Type);
// 基于顶点工厂类型的源码和包含计算出来的哈希.
const FSHAHash& GetSourceHash(EShaderPlatform ShaderPlatform) const;
// 是否需要缓存材质的着色器类型.
bool ShouldCache(const FVertexFactoryShaderPermutationParameters& Parameters) const;
void ModifyCompilationEnvironment(...);
void ValidateCompiledResult(EShaderPlatform Platform, ...);
bool SupportsTessellationShaders() const;
// 增加引用的Uniform Buffer包含.
void AddReferencedUniformBufferIncludes(...);
void FlushShaderFileCache(...);
const TMap<const TCHAR*, FCachedUniformBufferDeclaration>& GetReferencedUniformBufferStructsCache() const;
private:
static uint32 NumVertexFactories;
static bool bInitializedSerializationHistory;
// 顶点工厂类型的各类数据和标记.
const TCHAR* Name;
const TCHAR* ShaderFilename;
FName TypeName;
FHashedName HashedName;
uint32 bUsedWithMaterials : 1;
uint32 bSupportsStaticLighting : 1;
uint32 bSupportsDynamicLighting : 1;
uint32 bSupportsPrecisePrevWorldPos : 1;
uint32 bSupportsPositionOnly : 1;
uint32 bSupportsCachingMeshDrawCommands : 1;
uint32 bSupportsPrimitiveIdStream : 1;
ConstructParametersType ConstructParameters;
GetParameterTypeLayoutType GetParameterTypeLayout;
GetParameterTypeElementShaderBindingsType GetParameterTypeElementShaderBindings;
ShouldCacheType ShouldCacheRef;
ModifyCompilationEnvironmentType ModifyCompilationEnvironmentRef;
ValidateCompiledResultType ValidateCompiledResultRef;
SupportsTessellationShadersType SupportsTessellationShadersRef;
// 全局顶点工厂类型列表.
TLinkedList<FVertexFactoryType*> GlobalListLink;
// 缓存引用的Uniform Buffer的包含.
TMap<const TCHAR*, FCachedUniformBufferDeclaration> ReferencedUniformBufferStructsCache;
// 跟踪ReferencedUniformBufferStructsCache缓存了哪些平台的声明.
bool bCachedUniformBufferStructDeclarations;
};
// ------顶点工厂的工具宏------
// 实现顶点工厂参数类型
#define IMPLEMENT_VERTEX_FACTORY_PARAMETER_TYPE(FactoryClass, ShaderFrequency, ParameterClass)
// 顶点工厂类型的声明
#define DECLARE_VERTEX_FACTORY_TYPE(FactoryClass)
// 顶点工厂类型的实现
#define IMPLEMENT_VERTEX_FACTORY_TYPE(FactoryClass,ShaderFilename,bUsedWithMaterials,bSupportsStaticLighting,bSupportsDynamicLighting,bPrecisePrevWorldPos,bSupportsPositionOnly)
// 顶点工厂的虚函数表实现
#define IMPLEMENT_VERTEX_FACTORY_VTABLE(FactoryClass
// 顶点工厂
class FVertexFactory : public FRenderResource
{
public:
FVertexFactory(ERHIFeatureLevel::Type InFeatureLevel);
virtual FVertexFactoryType* GetType() const;
// 获取顶点数据流.
void GetStreams(ERHIFeatureLevel::Type InFeatureLevel, EVertexInputStreamType VertexStreamType, FVertexInputStreamArray& OutVertexStreams) const
{
// Default顶点流类型
if (VertexStreamType == EVertexInputStreamType::Default)
{
bool bSupportsVertexFetch = SupportsManualVertexFetch(InFeatureLevel);
// 将顶点工厂的数据构造到FVertexInputStream中并添加到输出列表
for (int32 StreamIndex = 0;StreamIndex < Streams.Num();StreamIndex++)
{
const FVertexStream& Stream = Streams[StreamIndex];
if (!(EnumHasAnyFlags(EVertexStreamUsage::ManualFetch, Stream.VertexStreamUsage) && bSupportsVertexFetch))
{
if (!Stream.VertexBuffer)
{
OutVertexStreams.Add(FVertexInputStream(StreamIndex, 0, nullptr));
}
else
{
if (EnumHasAnyFlags(EVertexStreamUsage::Overridden, Stream.VertexStreamUsage) && !Stream.VertexBuffer->IsInitialized())
{
OutVertexStreams.Add(FVertexInputStream(StreamIndex, 0, nullptr));
}
else
{
OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI));
}
}
}
}
}
// 只有位置和的顶点流类型
else if (VertexStreamType == EVertexInputStreamType::PositionOnly)
{
// Set the predefined vertex streams.
for (int32 StreamIndex = 0; StreamIndex < PositionStream.Num(); StreamIndex++)
{
const FVertexStream& Stream = PositionStream[StreamIndex];
OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI));
}
}
// 只有位置和法线的顶点流类型
else if (VertexStreamType == EVertexInputStreamType::PositionAndNormalOnly)
{
// Set the predefined vertex streams.
for (int32 StreamIndex = 0; StreamIndex < PositionAndNormalStream.Num(); StreamIndex++)
{
const FVertexStream& Stream = PositionAndNormalStream[StreamIndex];
OutVertexStreams.Add(FVertexInputStream(StreamIndex, Stream.Offset, Stream.VertexBuffer->VertexBufferRHI));
}
}
else
{
// NOT_IMPLEMENTED
}
}
// 偏移实例的数据流.
void OffsetInstanceStreams(uint32 InstanceOffset, EVertexInputStreamType VertexStreamType, FVertexInputStreamArray& VertexStreams) const;
static void ModifyCompilationEnvironment(...);
static void ValidateCompiledResult(...);
static bool SupportsTessellationShaders();
// FRenderResource接口, 释放RHI资源.
virtual void ReleaseRHI();
// 设置/获取顶点声明的RHI引用.
FVertexDeclarationRHIRef& GetDeclaration();
void SetDeclaration(FVertexDeclarationRHIRef& NewDeclaration);
// 根据类型获取顶点声明的RHI引用.
const FVertexDeclarationRHIRef& GetDeclaration(EVertexInputStreamType InputStreamType) const
{
switch (InputStreamType)
{
case EVertexInputStreamType::Default: return Declaration;
case EVertexInputStreamType::PositionOnly: return PositionDeclaration;
case EVertexInputStreamType::PositionAndNormalOnly: return PositionAndNormalDeclaration;
}
return Declaration;
}
// 各类标记.
virtual bool IsGPUSkinned() const;
virtual bool SupportsPositionOnlyStream() const;
virtual bool SupportsPositionAndNormalOnlyStream() const;
virtual bool SupportsNullPixelShader() const;
// 用面向摄像机精灵的方式渲染图元.
virtual bool RendersPrimitivesAsCameraFacingSprites() const;
// 是否需要顶点声明.
bool NeedsDeclaration() const;
// 是否支持手动的顶点获取.
inline bool SupportsManualVertexFetch(const FStaticFeatureLevel InFeatureLevel) const;
// 根据流类型获取索引.
inline int32 GetPrimitiveIdStreamIndex(EVertexInputStreamType InputStreamType) const;
protected:
inline void SetPrimitiveIdStreamIndex(EVertexInputStreamType InputStreamType, int32 StreamIndex)
{
PrimitiveIdStreamIndex[static_cast<uint8>(InputStreamType)] = StreamIndex;
}
// 为顶点流组件创建顶点元素.
FVertexElement AccessStreamComponent(const FVertexStreamComponent& Component,uint8 AttributeIndex);
FVertexElement AccessStreamComponent(const FVertexStreamComponent& Component, uint8 AttributeIndex, EVertexInputStreamType InputStreamType);
// 初始化顶点声明.
void InitDeclaration(const FVertexDeclarationElementList& Elements, EVertexInputStreamType StreamType = EVertexInputStreamType::Default)
{
if (StreamType == EVertexInputStreamType::PositionOnly)
{
PositionDeclaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements);
}
else if (StreamType == EVertexInputStreamType::PositionAndNormalOnly)
{
PositionAndNormalDeclaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements);
}
else // (StreamType == EVertexInputStreamType::Default)
{
// Create the vertex declaration for rendering the factory normally.
Declaration = PipelineStateCache::GetOrCreateVertexDeclaration(Elements);
}
}
// 顶点流, 需要设置到顶点流的信息体.
struct FVertexStream
{
const FVertexBuffer* VertexBuffer = nullptr;
uint32 Offset = 0;
uint16 Stride = 0;
EVertexStreamUsage VertexStreamUsage = EVertexStreamUsage::Default;
uint8 Padding = 0;
friend bool operator==(const FVertexStream& A,const FVertexStream& B);
FVertexStream();
};
// 用于渲染顶点工厂的顶点流.
TArray<FVertexStream,TInlineAllocator<8> > Streams;
// VF(顶点工厂)可以显式地将此设置为false,以避免在没有声明的情况下出现错误. 主要用于需要直接从缓冲区获取数据的VF(如Niagara).
bool bNeedsDeclaration = true;
bool bSupportsManualVertexFetch = false;
int8 PrimitiveIdStreamIndex[3] = { -1, -1, -1 };
private:
// 只有位置的顶点流, 用于渲染深度Pass的顶点工厂.
TArray<FVertexStream,TInlineAllocator<2> > PositionStream;
// 只有位置和法线的顶点流.
TArray<FVertexStream, TInlineAllocator<3> > PositionAndNormalStream;
// 用于常规渲染顶点工厂的RHI顶点声明.
FVertexDeclarationRHIRef Declaration;
// PositionStream和PositionAndNormalStream对应的RHI资源.
FVertexDeclarationRHIRef PositionDeclaration;
FVertexDeclarationRHIRef PositionAndNormalDeclaration;
};
上面展示了Vertex Factory的很多类型,有好几个是核心类,比如FVertexFactory、FVertexElement、FRHIVertexDeclaration、FRHIVertexBuffer、FVertexFactoryType、FVertexStreamComponent、FVertexInputStream、FVertexFactoryShaderParameters等。那么它们之间的关系是什么呢?
为了更好地说明它们之间的关系,以静态模型的FStaticMeshDataType为例:
!
FStaticMeshDataType会包含若干个FVertexStreamComponent实例,每个FVertexStreamComponent包含了一个在FVertexDeclarationElementList的FVertexElement实例索引和一个在FVertexInputStreamArray列表的FVertexStream实例索引。
此外,FVertexFactory是个基类,内置的子类主要有:
- FGeometryCacheVertexVertexFactory:几何缓存顶点的顶点工厂,常用于预生成的布料、动作等网格类型。
- FGPUBaseSkinVertexFactory:GPU蒙皮骨骼网格的父类,它的子类有:
- TGPUSkinVertexFactory:可指定骨骼权重方式的GPU蒙皮的顶点工厂。
- FLocalVertexFactory:局部顶点工厂,常用于静态网格,它拥有数量较多的子类:
- FInstancedStaticMeshVertexFactory:实例化的静态网格顶点工厂。
- FSplineMeshVertexFactory:样条曲线网格顶点工厂。
- FGeometryCollectionVertexFactory:几何收集顶点工厂。
- FGPUSkinPassthroughVertexFactory:启用了Skin Cache模式的蒙皮骨骼顶点工厂。
- FSingleTriangleMeshVertexFactory:单个三角形网格的顶点工厂,用于体积云渲染。
- ......
- FParticleVertexFactoryBase:用于粒子渲染的顶点工厂基类。
- FLandscapeVertexFactory:用于渲染地形的顶点工厂。
除了以上继承自FVertexFactory,还有一些不是继承自FVertexFactory的类型,如:
- FGPUBaseSkinAPEXClothVertexFactory:布料顶点工厂。
- TGPUSkinAPEXClothVertexFactory:可带骨骼权重模式的布料顶点工厂。
除了FVertexFactory,相应的其它核心类也有继承体系。比如FVertexFactoryShaderParameters的子类有:
- FGeometryCacheVertexFactoryShaderParameters
- FGPUSkinVertexFactoryShaderParameters
- FMeshParticleVertexFactoryShaderParameters
- FParticleSpriteVertexFactoryShaderParameters
- FGPUSpriteVertexFactoryShaderParametersVS
- FGPUSpriteVertexFactoryShaderParametersPS
- FSplineMeshVertexFactoryShaderParameters
- FLocalVertexFactoryShaderParametersBase
- FLandscapeVertexFactoryVertexShaderParameters
- FLandscapeVertexFactoryPixelShaderParameters
- ......
另外,有部分顶点工厂还会在内部派生FStaticMeshDataType的类型,以复用静态网格相关的数据成员。为了更好地说明顶点工厂的使用方式,下面就以最常见的FLocalVertexFactory和使用了FLocalVertexFactory的CableComponent为例:
class ENGINE_API FLocalVertexFactory : public FVertexFactory
{
public:
FLocalVertexFactory(ERHIFeatureLevel::Type InFeatureLevel, const char* InDebugName);
// 派生自FStaticMeshDataType的数据类型.
struct FDataType : public FStaticMeshDataType
{
FRHIShaderResourceView* PreSkinPositionComponentSRV = nullptr;
};
// 环境变量更改和校验.
static bool ShouldCompilePermutation(const FVertexFactoryShaderPermutationParameters& Parameters);
static void ModifyCompilationEnvironment(const FVertexFactoryShaderPermutationParameters& Parameters, FShaderCompilerEnvironment& OutEnvironment);
static void ValidateCompiledResult(const FVertexFactoryType* Type, EShaderPlatform Platform, const FShaderParameterMap& ParameterMap, TArray<FString>& OutErrors);
// 由TSynchronizedResource从游戏线程更新而来的数据.
void SetData(const FDataType& InData);
// 从其它顶点工厂复制数据.
void Copy(const FLocalVertexFactory& Other);
// FRenderResource接口.
virtual void InitRHI() override;
virtual void ReleaseRHI() override
{
UniformBuffer.SafeRelease();
FVertexFactory::ReleaseRHI();
}
// 顶点颜色接口.
void SetColorOverrideStream(FRHICommandList& RHICmdList, const FVertexBuffer* ColorVertexBuffer) const;
void GetColorOverrideStream(const FVertexBuffer* ColorVertexBuffer, FVertexInputStreamArray& VertexStreams) const;
// 着色器参数和其它数据接口.
inline FRHIShaderResourceView* GetPositionsSRV() const;
inline FRHIShaderResourceView* GetPreSkinPositionSRV() const;
inline FRHIShaderResourceView* GetTangentsSRV() const;
inline FRHIShaderResourceView* GetTextureCoordinatesSRV() const;
inline FRHIShaderResourceView* GetColorComponentsSRV() const;
inline const uint32 GetColorIndexMask() const;
inline const int GetLightMapCoordinateIndex() const;
inline const int GetNumTexcoords() const;
FRHIUniformBuffer* GetUniformBuffer() const;
(......)
protected:
// 从游戏线程传入的数据. FDataType是FStaticMeshDataType的子类.
FDataType Data;
// 局部顶点工厂的着色器参数.
TUniformBufferRef<FLocalVertexFactoryUniformShaderParameters> UniformBuffer;
// 顶点颜色流索引.
int32 ColorStreamIndex;
(......)
};
// Engine\Source\Runtime\Engine\Public\LocalVertexFactory.cpp
void FLocalVertexFactory::InitRHI()
{
// 是否使用gpu场景.
const bool bCanUseGPUScene = UseGPUScene(GMaxRHIShaderPlatform, GMaxRHIFeatureLevel);
// 初始化位置流和位置声明.
if (Data.PositionComponent.VertexBuffer != Data.TangentBasisComponents[0].VertexBuffer)
{
// 增加顶点声明.
auto AddDeclaration = [this, bCanUseGPUScene](EVertexInputStreamType InputStreamType, bool bAddNormal)
{
// 顶点流元素.
FVertexDeclarationElementList StreamElements;
StreamElements.Add(AccessStreamComponent(Data.PositionComponent, 0, InputStreamType));
bAddNormal = bAddNormal && Data.TangentBasisComponents[1].VertexBuffer != NULL;
if (bAddNormal)
{
StreamElements.Add(AccessStreamComponent(Data.TangentBasisComponents[1], 2, InputStreamType));
}
const uint8 TypeIndex = static_cast<uint8>(InputStreamType);
PrimitiveIdStreamIndex[TypeIndex] = -1;
if (GetType()->SupportsPrimitiveIdStream() && bCanUseGPUScene)
{
// When the VF is used for rendering in normal mesh passes, this vertex buffer and offset will be overridden
StreamElements.Add(AccessStreamComponent(FVertexStreamComponent(&GPrimitiveIdDummy, 0, 0, sizeof(uint32), VET_UInt, EVertexStreamUsage::Instancing), 1, InputStreamType));
PrimitiveIdStreamIndex[TypeIndex] = StreamElements.Last().StreamIndex;
}
// 初始化声明.
InitDeclaration(StreamElements, InputStreamType);
};
// 增加PositionOnly和PositionAndNormalOnly两种顶点声明, 其中前者不需要法线.
AddDeclaration(EVertexInputStreamType::PositionOnly, false);
AddDeclaration(EVertexInputStreamType::PositionAndNormalOnly, true);
}
// 顶点声明元素列表.
FVertexDeclarationElementList Elements;
// 顶点位置
if(Data.PositionComponent.VertexBuffer != NULL)
{
Elements.Add(AccessStreamComponent(Data.PositionComponent,0));
}
// 图元id
{
const uint8 Index = static_cast<uint8>(EVertexInputStreamType::Default);
PrimitiveIdStreamIndex[Index] = -1;
if (GetType()->SupportsPrimitiveIdStream() && bCanUseGPUScene)
{
// When the VF is used for rendering in normal mesh passes, this vertex buffer and offset will be overridden
Elements.Add(AccessStreamComponent(FVertexStreamComponent(&GPrimitiveIdDummy, 0, 0, sizeof(uint32), VET_UInt, EVertexStreamUsage::Instancing), 13));
PrimitiveIdStreamIndex[Index] = Elements.Last().StreamIndex;
}
}
// 切线和法线, 切线法线才需要被顶点流使用, 副法线由shader生成.
uint8 TangentBasisAttributes[2] = { 1, 2 };
for(int32 AxisIndex = 0;AxisIndex < 2;AxisIndex++)
{
if(Data.TangentBasisComponents[AxisIndex].VertexBuffer != NULL)
{
Elements.Add(AccessStreamComponent(Data.TangentBasisComponents[AxisIndex],TangentBasisAttributes[AxisIndex]));
}
}
if (Data.ColorComponentsSRV == nullptr)
{
Data.ColorComponentsSRV = GNullColorVertexBuffer.VertexBufferSRV;
Data.ColorIndexMask = 0;
}
// 顶点颜色
ColorStreamIndex = -1;
if(Data.ColorComponent.VertexBuffer)
{
Elements.Add(AccessStreamComponent(Data.ColorComponent,3));
ColorStreamIndex = Elements.Last().StreamIndex;
}
else
{
FVertexStreamComponent NullColorComponent(&GNullColorVertexBuffer, 0, 0, VET_Color, EVertexStreamUsage::ManualFetch);
Elements.Add(AccessStreamComponent(NullColorComponent, 3));
ColorStreamIndex = Elements.Last().StreamIndex;
}
// 纹理坐标
if(Data.TextureCoordinates.Num())
{
const int32 BaseTexCoordAttribute = 4;
for(int32 CoordinateIndex = 0;CoordinateIndex < Data.TextureCoordinates.Num();CoordinateIndex++)
{
Elements.Add(AccessStreamComponent(
Data.TextureCoordinates[CoordinateIndex],
BaseTexCoordAttribute + CoordinateIndex
));
}
for (int32 CoordinateIndex = Data.TextureCoordinates.Num(); CoordinateIndex < MAX_STATIC_TEXCOORDS / 2; CoordinateIndex++)
{
Elements.Add(AccessStreamComponent(
Data.TextureCoordinates[Data.TextureCoordinates.Num() - 1],
BaseTexCoordAttribute + CoordinateIndex
));
}
}
// 光照图
if(Data.LightMapCoordinateComponent.VertexBuffer)
{
Elements.Add(AccessStreamComponent(Data.LightMapCoordinateComponent,15));
}
else if(Data.TextureCoordinates.Num())
{
Elements.Add(AccessStreamComponent(Data.TextureCoordinates[0],15));
}
// 初始化顶点声明
InitDeclaration(Elements);
const int32 DefaultBaseVertexIndex = 0;
const int32 DefaultPreSkinBaseVertexIndex = 0;
if (RHISupportsManualVertexFetch(GMaxRHIShaderPlatform) || bCanUseGPUScene)
{
SCOPED_LOADTIMER(FLocalVertexFactory_InitRHI_CreateLocalVFUniformBuffer);
UniformBuffer = CreateLocalVFUniformBuffer(this, Data.LODLightmapDataIndex, nullptr, DefaultBaseVertexIndex, DefaultPreSkinBaseVertexIndex);
}
}
// 实现FLocalVertexFactory的参数类型.
IMPLEMENT_VERTEX_FACTORY_PARAMETER_TYPE(FLocalVertexFactory, SF_Vertex, FLocalVertexFactoryShaderParameters);
// 实现FLocalVertexFactory.
IMPLEMENT_VERTEX_FACTORY_TYPE_EX(FLocalVertexFactory,"/Engine/Private/LocalVertexFactory.ush",true,true,true,true,true,true,true);
下面进入CableComponent相关类型关于FLocalVertexFactory的使用:
// Engine\Plugins\Runtime\CableComponent\Source\CableComponent\Private\CableComponent.cpp
class FCableSceneProxy final : public FPrimitiveSceneProxy
{
public:
FCableSceneProxy(UCableComponent* Component)
: FPrimitiveSceneProxy(Component)
, Material(NULL)
// 构造顶点工厂.
, VertexFactory(GetScene().GetFeatureLevel(), "FCableSceneProxy")
(......)
{
// 利用顶点工厂初始化缓冲区.
VertexBuffers.InitWithDummyData(&VertexFactory, GetRequiredVertexCount());
(......)
}
virtual ~FCableSceneProxy()
{
// 释放顶点工厂.
VertexFactory.ReleaseResource();
(......)
}
// 构建Cable网格.
void BuildCableMesh(const TArray<FVector>& InPoints, TArray<FDynamicMeshVertex>& OutVertices, TArray<int32>& OutIndices)
{
(......)
}
// 设置动态数据(渲染线程调用)
void SetDynamicData_RenderThread(FCableDynamicData* NewDynamicData)
{
// 释放旧数据.
if(DynamicData)
{
delete DynamicData;
DynamicData = NULL;
}
DynamicData = NewDynamicData;
// 从Cable点构建顶点.
TArray<FDynamicMeshVertex> Vertices;
TArray<int32> Indices;
BuildCableMesh(NewDynamicData->CablePoints, Vertices, Indices);
// 填充顶点缓冲区数据.
for (int i = 0; i < Vertices.Num(); i++)
{
const FDynamicMeshVertex& Vertex = Vertices[i];
VertexBuffers.PositionVertexBuffer.VertexPosition(i) = Vertex.Position;
VertexBuffers.StaticMeshVertexBuffer.SetVertexTangents(i, Vertex.TangentX.ToFVector(), Vertex.GetTangentY(), Vertex.TangentZ.ToFVector());
VertexBuffers.StaticMeshVertexBuffer.SetVertexUV(i, 0, Vertex.TextureCoordinate[0]);
VertexBuffers.ColorVertexBuffer.VertexColor(i) = Vertex.Color;
}
// 更新顶点缓冲区数据到RHI.
{
auto& VertexBuffer = VertexBuffers.PositionVertexBuffer;
void* VertexBufferData = RHILockVertexBuffer(VertexBuffer.VertexBufferRHI, 0, VertexBuffer.GetNumVertices() * VertexBuffer.GetStride(), RLM_WriteOnly);
FMemory::Memcpy(VertexBufferData, VertexBuffer.GetVertexData(), VertexBuffer.GetNumVertices() * VertexBuffer.GetStride());
RHIUnlockVertexBuffer(VertexBuffer.VertexBufferRHI);
}
(......)
}
virtual void GetDynamicMeshElements(const TArray<const FSceneView*>& Views, const FSceneViewFamily& ViewFamily, uint32 VisibilityMap, FMeshElementCollector& Collector) const override
{
(......)
for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
{
if (VisibilityMap & (1 << ViewIndex))
{
const FSceneView* View = Views[ViewIndex];
// 构造FMeshBatch实例.
FMeshBatch& Mesh = Collector.AllocateMesh();
// 将顶点工厂实例传给FMeshBatch实例.
Mesh.VertexFactory = &VertexFactory;
(......)
Collector.AddMesh(ViewIndex, Mesh);
}
}
}
(......)
private:
// 材质
UMaterialInterface* Material;
// 顶点和索引缓冲.
FStaticMeshVertexBuffers VertexBuffers;
FCableIndexBuffer IndexBuffer;
// 顶点工厂.
FLocalVertexFactory VertexFactory;
// 动态数据.
FCableDynamicData* DynamicData;
(......)
};
主要步骤:
- 在构造函数中初始化LocalVertexFactory成员变量。
- SetDynamicData_RenderThread()
- 通过控制点构建CableMesh顶点数据。
- 填充顶点缓冲区数据。FStaticMeshVertexBuffers VertexBuffers
- PositionVertexBuffer.VertexPosition
- StaticMeshVertexBuffer.SetVertexTangents
- StaticMeshVertexBuffer.SetVertexUV
- ColorVertexBuffer.VertexColor
- 更新IndexBufferData到RHI。
- GetDynamicMeshElements():将顶点工厂实例传给FMeshBatch实例
- FMeshBatch& Mesh = Collector.AllocateMesh();
- Mesh.VertexFactory = &VertexFactory;
- Collector.AddMesh(ViewIndex, Mesh);
不过,无论是使用已有的还是自定义的顶点工厂,顶点工厂的顶点声明的顺序、类型、组件数量和插槽需要和HLSL层的FVertexFactoryInput保持一致。比如说FLocalVertexFactory::InitRHI的顶点声明顺序是位置、切线、颜色、纹理坐标、光照图,那么我们进入FLocalVertexFactory对应的HLSL文件(由IMPLEMENT_VERTEX_FACTORY_TYPE等宏指定)看看:
// Engine\Shaders\Private\LocalVertexFactory.ush
// 局部顶点工厂对应的输入结构体.
struct FVertexFactoryInput
{
// 位置
float4 Position : ATTRIBUTE0;
// 切线和颜色
#if !MANUAL_VERTEX_FETCH
#if METAL_PROFILE
float3 TangentX : ATTRIBUTE1;
// TangentZ.w contains sign of tangent basis determinant
float4 TangentZ : ATTRIBUTE2;
float4 Color : ATTRIBUTE3;
#else
half3 TangentX : ATTRIBUTE1;
// TangentZ.w contains sign of tangent basis determinant
half4 TangentZ : ATTRIBUTE2;
half4 Color : ATTRIBUTE3;
#endif
#endif
// 纹理坐标
#if NUM_MATERIAL_TEXCOORDS_VERTEX
#if !MANUAL_VERTEX_FETCH
#if GPUSKIN_PASS_THROUGH
// These must match GPUSkinVertexFactory.usf
float2 TexCoords[NUM_MATERIAL_TEXCOORDS_VERTEX] : ATTRIBUTE4;
#if NUM_MATERIAL_TEXCOORDS_VERTEX > 4
#error Too many texture coordinate sets defined on GPUSkin vertex input. Max: 4.
#endif
#else
#if NUM_MATERIAL_TEXCOORDS_VERTEX > 1
float4 PackedTexCoords4[NUM_MATERIAL_TEXCOORDS_VERTEX/2] : ATTRIBUTE4;
#endif
#if NUM_MATERIAL_TEXCOORDS_VERTEX == 1
float2 PackedTexCoords2 : ATTRIBUTE4;
#elif NUM_MATERIAL_TEXCOORDS_VERTEX == 3
float2 PackedTexCoords2 : ATTRIBUTE5;
#elif NUM_MATERIAL_TEXCOORDS_VERTEX == 5
float2 PackedTexCoords2 : ATTRIBUTE6;
#elif NUM_MATERIAL_TEXCOORDS_VERTEX == 7
float2 PackedTexCoords2 : ATTRIBUTE7;
#endif
#endif
#endif
#elif USE_PARTICLE_SUBUVS && !MANUAL_VERTEX_FETCH
float2 TexCoords[1] : ATTRIBUTE4;
#endif
(......)
};
因此可知,FVertexFactoryInput结构体的数据顺序和FLocalVertexFactory的顶点声明是一一对应的。
ShaderMap
ShaderMap的作用是存储编译后的shader代码,分为FGlobalShaderMap、FMaterialShaderMap、FMeshMaterialShaderMap三种类型。
- FGlobalShaderMap:FGlobalShaderMap保存并管理着所有编译好的FGlobalShader代码。(没有材质和顶点工程的)
- FMaterialShaderMap:存储和管理着一组FMaterialShader实例的对象。(额外关联一个材质和一个顶点工厂)
- 因此可以找到,每个FMaterial都有一个FMaterialShaderMap(游戏线程一个,渲染线程一个),如果要获取FMaterial的指定类型的Shader,就需要从该FMaterial的FMaterialShaderMap实例中获取,从而完成了它们之间的链接。
- FMeshMaterialShaderMap:存储和管理FMeshMaterialShader。
编译相关代码
如果需要了解编译过程可以查看RecompileShaders
命令。
// Engine\Source\Runtime\Launch\Private\LaunchEngineLoop.cpp
// 引擎预初始化.
int32 FEngineLoop::PreInitPreStartupScreen(const TCHAR* CmdLine)
{
(......)
// 是否开启shader编译, 一般情况下都会开启.
bool bEnableShaderCompile = !FParse::Param(FCommandLine::Get(), TEXT("NoShaderCompile"));
(......)
if (bEnableShaderCompile && !IsRunningDedicatedServer() && !bIsCook)
{
(......)
// 编译GlobalShaderMap
CompileGlobalShaderMap(false);
(......)
}
(......)
}
// Engine\Source\Runtime\Engine\Private\ShaderCompiler\ShaderCompiler.cpp
void CompileGlobalShaderMap(EShaderPlatform Platform, const ITargetPlatform* TargetPlatform, bool bRefreshShaderMap)
{
(......)
// 如果对应平台的GlobalShaderMap未创建, 则创建之.
if (!GGlobalShaderMap[Platform])
{
(......)
// 创建对应平台的FGlobalShaderMap.
GGlobalShaderMap[Platform] = new FGlobalShaderMap(Platform);
// Cooked模式.
if (FPlatformProperties::RequiresCookedData())
{
(......)
}
// Uncooked模式
else
{
// FGlobalShaderMap的id.
FGlobalShaderMapId ShaderMapId(Platform);
const int32 ShaderFilenameNum = ShaderMapId.GetShaderFilenameToDependeciesMap().Num();
const float ProgressStep = 25.0f / ShaderFilenameNum;
TArray<uint32> AsyncDDCRequestHandles;
AsyncDDCRequestHandles.SetNum(ShaderFilenameNum);
int32 HandleIndex = 0;
// 提交DDC请求.
for (const auto& ShaderFilenameDependencies : ShaderMapId.GetShaderFilenameToDependeciesMap())
{
SlowTask.EnterProgressFrame(ProgressStep);
const FString DataKey = GetGlobalShaderMapKeyString(ShaderMapId, Platform, TargetPlatform, ShaderFilenameDependencies.Value);
AsyncDDCRequestHandles[HandleIndex] = GetDerivedDataCacheRef().GetAsynchronous(*DataKey, TEXT("GlobalShaderMap"_SV));
++HandleIndex;
}
// 处理已经结束的DDC请求.
TArray<uint8> CachedData;
HandleIndex = 0;
for (const auto& ShaderFilenameDependencies : ShaderMapId.GetShaderFilenameToDependeciesMap())
{
SlowTask.EnterProgressFrame(ProgressStep);
CachedData.Reset();
GetDerivedDataCacheRef().WaitAsynchronousCompletion(AsyncDDCRequestHandles[HandleIndex]);
if (GetDerivedDataCacheRef().GetAsynchronousResults(AsyncDDCRequestHandles[HandleIndex], CachedData))
{
FMemoryReader MemoryReader(CachedData);
GGlobalShaderMap[Platform]->AddSection(FGlobalShaderMapSection::CreateFromArchive(MemoryReader));
}
else
{
// 没有在DDC中找到, 忽略之.
}
++HandleIndex;
}
}
// 如果有shader没有被加载, 编译之.
VerifyGlobalShaders(Platform, bLoadedFromCacheFile);
// 创建所有着色器.
if (GCreateShadersOnLoad && Platform == GMaxRHIShaderPlatform)
{
GGlobalShaderMap[Platform]->BeginCreateAllShaders();
}
}
}
Shader调试
修改Engine\Config\ConsoleVariables.ini
配置
- r.ShaderDevelopmentMode=1 获得关于着色器编译的详细日志和错误重试的机会。
- r.DumpShaderDebugInfo=1 将编译的所有着色器的文件保存到磁盘ProjectName/Saved/ShaderDebugInfo的目录。包含源文件、预处理后的版本、一个批处理文件(用于使用编译器等效的命令行选项来编译预处理版本)。
- r.DumpShaderDebugShortNames=1 保存的Shader路径将被精简。
- r.Shaders.Optimize=0 禁用着色器优化,使得shader的调试信息被保留。
- r.Shaders.KeepDebugInfo=1 保留调试信息,配合RenderDoc等截帧工具时特别有用。
- r.Shaders.SkipCompression=1 忽略shader压缩,可以节省调试shader的时间。
另外,如果修改了Shader的某些文件(如BasePassPixelShader.ush),不需要重启UE编辑器,可以在控制台输入RecompileShaders
命令重新编译指定的shader文件。其中RecompileShaders
的具体含义如下:
- RecompileShaders all 编译源码有修改的所有shader,包含global、material、meshmaterial。
- RecompileShaders changed 编译源码有修改的shader。
- RecompileShaders global 编译源码有修改的global shader。
- RecompileShaders material 编译源码有修改的material shader。
- RecompileShaders material 编译指定名称的材质。
- RecompileShaders 编译指定路径的shader源文件。
案例
新增加FVertexFactory子类的过程如下:
// FMyVertexFactory.h
// 声明顶点工厂着色器参数.
BEGIN_GLOBAL_SHADER_PARAMETER_STRUCT(FMyVertexFactoryParameters, )
SHADER_PARAMETER(FVector4, Color)
END_GLOBAL_SHADER_PARAMETER_STRUCT()
// 声明类型.
typedef TUniformBufferRef<FMyVertexFactoryParameters> FMyVertexFactoryBufferRef;
// 索引缓冲.
class FMyMeshIndexBuffer : public FIndexBuffer
{
public:
FMyMeshIndexBuffer(int32 InNumQuadsPerSide) : NumQuadsPerSide(InNumQuadsPerSide) {}
void InitRHI() override
{
if (NumQuadsPerSide < 256)
{
IndexBufferRHI = CreateIndexBuffer<uint16>();
}
else
{
IndexBufferRHI = CreateIndexBuffer<uint32>();
}
}
int32 GetIndexCount() const { return NumIndices; };
private:
template <typename IndexType>
FIndexBufferRHIRef CreateIndexBuffer()
{
TResourceArray<IndexType, INDEXBUFFER_ALIGNMENT> Indices;
// 分配顶点索引内存.
Indices.Reserve(NumQuadsPerSide * NumQuadsPerSide * 6);
// 用Morton顺序构建索引缓冲, 以更好地重用顶点.
for (int32 Morton = 0; Morton < NumQuadsPerSide * NumQuadsPerSide; Morton++)
{
int32 SquareX = FMath::ReverseMortonCode2(Morton);
int32 SquareY = FMath::ReverseMortonCode2(Morton >> 1);
bool ForwardDiagonal = false;
if (SquareX % 2)
{
ForwardDiagonal = !ForwardDiagonal;
}
if (SquareY % 2)
{
ForwardDiagonal = !ForwardDiagonal;
}
int32 Index0 = SquareX + SquareY * (NumQuadsPerSide + 1);
int32 Index1 = Index0 + 1;
int32 Index2 = Index0 + (NumQuadsPerSide + 1);
int32 Index3 = Index2 + 1;
Indices.Add(Index3);
Indices.Add(Index1);
Indices.Add(ForwardDiagonal ? Index2 : Index0);
Indices.Add(Index0);
Indices.Add(Index2);
Indices.Add(ForwardDiagonal ? Index1 : Index3);
}
NumIndices = Indices.Num();
const uint32 Size = Indices.GetResourceDataSize();
const uint32 Stride = sizeof(IndexType);
// Create index buffer. Fill buffer with initial data upon creation
FRHIResourceCreateInfo CreateInfo(&Indices);
return RHICreateIndexBuffer(Stride, Size, BUF_Static, CreateInfo);
}
int32 NumIndices = 0;
const int32 NumQuadsPerSide = 0;
};
// 顶点索引.
class FMyMeshVertexBuffer : public FVertexBuffer
{
public:
FMyMeshVertexBuffer(int32 InNumQuadsPerSide) : NumQuadsPerSide(InNumQuadsPerSide) {}
virtual void InitRHI() override
{
const uint32 NumVertsPerSide = NumQuadsPerSide + 1;
NumVerts = NumVertsPerSide * NumVertsPerSide;
FRHIResourceCreateInfo CreateInfo;
void* BufferData = nullptr;
VertexBufferRHI = RHICreateAndLockVertexBuffer(sizeof(FVector4) * NumVerts, BUF_Static, CreateInfo, BufferData);
FVector4* DummyContents = (FVector4*)BufferData;
for (uint32 VertY = 0; VertY < NumVertsPerSide; VertY++)
{
FVector4 VertPos;
VertPos.Y = (float)VertY / NumQuadsPerSide - 0.5f;
for (uint32 VertX = 0; VertX < NumVertsPerSide; VertX++)
{
VertPos.X = (float)VertX / NumQuadsPerSide - 0.5f;
DummyContents[NumVertsPerSide * VertY + VertX] = VertPos;
}
}
RHIUnlockVertexBuffer(VertexBufferRHI);
}
int32 GetVertexCount() const { return NumVerts; }
private:
int32 NumVerts = 0;
const int32 NumQuadsPerSide = 0;
};
// 顶点工厂.
class FMyVertexFactory : public FVertexFactory
{
DECLARE_VERTEX_FACTORY_TYPE(FMyVertexFactory);
public:
using Super = FVertexFactory;
FMyVertexFactory(ERHIFeatureLevel::Type InFeatureLevel);
~FMyVertexFactory();
virtual void InitRHI() override;
virtual void ReleaseRHI() override;
static bool ShouldCompilePermutation(const FVertexFactoryShaderPermutationParameters& Parameters);
static void ModifyCompilationEnvironment(const FVertexFactoryShaderPermutationParameters& Parameters, FShaderCompilerEnvironment& OutEnvironment);
static void ValidateCompiledResult(const FVertexFactoryType* Type, EShaderPlatform Platform, const FShaderParameterMap& ParameterMap, TArray<FString>& OutErrors);
inline const FUniformBufferRHIRef GetMyVertexFactoryUniformBuffer() const { return UniformBuffer; }
private:
void SetupUniformData();
FMyMeshVertexBuffer* VertexBuffer = nullptr;
FMyMeshIndexBuffer* IndexBuffer = nullptr;
FMyVertexFactoryBufferRef UniformBuffer;
};
// FMyVertexFactory.cpp
#include "ShaderParameterUtils.h"
// 实现FMyVertexFactoryParameters, 注意在shader的名字是MyVF.
IMPLEMENT_GLOBAL_SHADER_PARAMETER_STRUCT(FMyVertexFactoryParameters, "MyVF");
// 顶点工厂着色器参数.
class FMyVertexFactoryShaderParameters : public FVertexFactoryShaderParameters
{
DECLARE_TYPE_LAYOUT(FMyVertexFactoryShaderParameters, NonVirtual);
public:
void Bind(const FShaderParameterMap& ParameterMap)
{
}
void GetElementShaderBindings(
const class FSceneInterface* Scene,
const class FSceneView* View,
const class FMeshMaterialShader* Shader,
const EVertexInputStreamType InputStreamType,
ERHIFeatureLevel::Type FeatureLevel,
const class FVertexFactory* InVertexFactory,
const struct FMeshBatchElement& BatchElement,
class FMeshDrawSingleShaderBindings& ShaderBindings,
FVertexInputStreamArray& VertexStreams) const
{
// 强制转换成FMyVertexFactory.
FMyVertexFactory* VertexFactory = (FMyVertexFactory*)InVertexFactory;
// 增加shader帮定到表格.
ShaderBindings.Add(Shader->GetUniformBufferParameter<FMyVertexFactoryShaderParameters>(), VertexFactory->GetMyVertexFactoryUniformBuffer());
// 填充顶点流.
if (VertexStreams.Num() > 0)
{
// 处理顶点流索引.
for (int32 i = 0; i < 2; ++i)
{
FVertexInputStream* InstanceInputStream = VertexStreams.FindByPredicate([i](const FVertexInputStream& InStream) { return InStream.StreamIndex == i+1; });
// 绑定顶点流索引.
InstanceInputStream->VertexBuffer = InstanceDataBuffers->GetBuffer(i);
}
// 处理偏移.
if (InstanceOffsetValue > 0)
{
VertexFactory->OffsetInstanceStreams(InstanceOffsetValue, InputStreamType, VertexStreams);
}
}
}
};
// ----------- 实现顶点工厂 -----------
FMyVertexFactory::FMyVertexFactory(ERHIFeatureLevel::Type InFeatureLevel)
{
VertexBuffer = new FMyMeshVertexBuffer(16);
IndexBuffer = new FMyMeshIndexBuffer(16);
}
FMyVertexFactory::~FMyVertexFactory()
{
delete VertexBuffer;
delete IndexBuffer;
}
void FMyVertexFactory::InitRHI()
{
Super::InitRHI();
// 设置Uniform数据.
SetupUniformData();
VertexBuffer->InitResource();
IndexBuffer->InitResource();
// 顶点流: 位置
FVertexStream PositionVertexStream;
PositionVertexStream.VertexBuffer = VertexBuffer;
PositionVertexStream.Stride = sizeof(FVector4);
PositionVertexStream.Offset = 0;
PositionVertexStream.VertexStreamUsage = EVertexStreamUsage::Default;
// 简单的实例化顶点流数据 其中VertexBuffer在绑定时设置.
FVertexStream InstanceDataVertexStream;
InstanceDataVertexStream.VertexBuffer = nullptr;
InstanceDataVertexStream.Stride = sizeof(FVector4);
InstanceDataVertexStream.Offset = 0;
InstanceDataVertexStream.VertexStreamUsage = EVertexStreamUsage::Instancing;
FVertexElement VertexPositionElement(Streams.Add(PositionVertexStream), 0, VET_Float4, 0, PositionVertexStream.Stride, false);
// 顶点声明.
FVertexDeclarationElementList Elements;
Elements.Add(VertexPositionElement);
// 添加索引顶点流.
for (int32 StreamIdx = 0; StreamIdx < NumAdditionalVertexStreams; ++StreamIdx)
{
FVertexElement InstanceElement(Streams.Add(InstanceDataVertexStream), 0, VET_Float4, 8 + StreamIdx, InstanceDataVertexStream.Stride, true);
Elements.Add(InstanceElement);
}
// 初始化声明.
InitDeclaration(Elements);
}
void FMyVertexFactory::ReleaseRHI()
{
UniformBuffer.SafeRelease();
if (VertexBuffer)
{
VertexBuffer->ReleaseResource();
}
if (IndexBuffer)
{
IndexBuffer->ReleaseResource();
}
Super::ReleaseRHI();
}
void FMyVertexFactory::SetupUniformData()
{
FMyVertexFactoryParameters UniformParams;
UniformParams.Color = FVector4(1,0,0,1);
UniformBuffer = FMyVertexFactoryBufferRef::CreateUniformBufferImmediate(UniformParams, UniformBuffer_MultiFrame);
}
void FMyVertexFactory::ShouldCompilePermutation(const FVertexFactoryShaderPermutationParameters& Parameters)
{
return true;
}
void FMyVertexFactory::ModifyCompilationEnvironment(const FVertexFactoryShaderPermutationParameters& Parameters, FShaderCompilerEnvironment& OutEnvironment)
{
OutEnvironment.SetDefine(TEXT("MY_MESH_FACTORY"), 1);
}
void FMyVertexFactory::ValidateCompiledResult(const FVertexFactoryType* Type, EShaderPlatform Platform, const FShaderParameterMap& ParameterMap, TArray<FString>& OutErrors)
{
}
C++层的逻辑已经完成,但HLSL层也需要编写对应的代码:
#include "/Engine/Private/VertexFactoryCommon.ush"
// VS插值到PS的结构体。
struct FVertexFactoryInterpolantsVSToPS
{
#if NUM_TEX_COORD_INTERPOLATORS
float4 TexCoords[(NUM_TEX_COORD_INTERPOLATORS+1)/2] : TEXCOORD0;
#endif
#if VF_USE_PRIMITIVE_SCENE_DATA
nointerpolation uint PrimitiveId : PRIMITIVE_ID;
#endif
#if INSTANCED_STEREO
nointerpolation uint EyeIndex : PACKED_EYE_INDEX;
#endif
};
struct FVertexFactoryInput
{
float4 Position : ATTRIBUTE0;
float4 InstanceData0 : ATTRIBUTE8;
float4 InstanceData1 : ATTRIBUTE9;
#if VF_USE_PRIMITIVE_SCENE_DATA
uint PrimitiveId : ATTRIBUTE13;
#endif
};
struct FPositionOnlyVertexFactoryInput
{
float4 Position : ATTRIBUTE0;
float4 InstanceData0 : ATTRIBUTE8;
float4 InstanceData1 : ATTRIBUTE9;
#if VF_USE_PRIMITIVE_SCENE_DATA
uint PrimitiveId : ATTRIBUTE1;
#endif
};
struct FPositionAndNormalOnlyVertexFactoryInput
{
float4 Position : ATTRIBUTE0;
float4 Normal : ATTRIBUTE2;
float4 InstanceData0 : ATTRIBUTE8;
float4 InstanceData1 : ATTRIBUTE9;
#if VF_USE_PRIMITIVE_SCENE_DATA
uint PrimitiveId : ATTRIBUTE1;
#endif
};
struct FVertexFactoryIntermediates
{
float3 OriginalWorldPos;
uint PrimitiveId;
};
uint GetPrimitiveId(FVertexFactoryInterpolantsVSToPS Interpolants)
{
#if VF_USE_PRIMITIVE_SCENE_DATA
return Interpolants.PrimitiveId;
#else
return 0;
#endif
}
void SetPrimitiveId(inout FVertexFactoryInterpolantsVSToPS Interpolants, uint PrimitiveId)
{
#if VF_USE_PRIMITIVE_SCENE_DATA
Interpolants.PrimitiveId = PrimitiveId;
#endif
}
#if NUM_TEX_COORD_INTERPOLATORS
float2 GetUV(FVertexFactoryInterpolantsVSToPS Interpolants, int UVIndex)
{
float4 UVVector = Interpolants.TexCoords[UVIndex / 2];
return UVIndex % 2 ? UVVector.zw : UVVector.xy;
}
void SetUV(inout FVertexFactoryInterpolantsVSToPS Interpolants, int UVIndex, float2 InValue)
{
FLATTEN
if (UVIndex % 2)
{
Interpolants.TexCoords[UVIndex / 2].zw = InValue;
}
else
{
Interpolants.TexCoords[UVIndex / 2].xy = InValue;
}
}
#endif
FMaterialPixelParameters GetMaterialPixelParameters(FVertexFactoryInterpolantsVSToPS Interpolants, float4 SvPosition)
{
// GetMaterialPixelParameters is responsible for fully initializing the result
FMaterialPixelParameters Result = MakeInitializedMaterialPixelParameters();
#if NUM_TEX_COORD_INTERPOLATORS
UNROLL
for (int CoordinateIndex = 0; CoordinateIndex < NUM_TEX_COORD_INTERPOLATORS; CoordinateIndex++)
{
Result.TexCoords[CoordinateIndex] = GetUV(Interpolants, CoordinateIndex);
}
#endif //NUM_MATERIAL_TEXCOORDS
Result.TwoSidedSign = 1;
Result.PrimitiveId = GetPrimitiveId(Interpolants);
return Result;
}
FMaterialVertexParameters GetMaterialVertexParameters(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates, float3 WorldPosition, half3x3 TangentToLocal)
{
FMaterialVertexParameters Result = (FMaterialVertexParameters)0;
Result.WorldPosition = WorldPosition;
Result.TangentToWorld = float3x3(1,0,0,0,1,0,0,0,1);
Result.PreSkinnedPosition = Input.Position.xyz;
Result.PreSkinnedNormal = float3(0,0,1);
#if NUM_MATERIAL_TEXCOORDS_VERTEX
UNROLL
for(int CoordinateIndex = 0; CoordinateIndex < NUM_MATERIAL_TEXCOORDS_VERTEX; CoordinateIndex++)
{
Result.TexCoords[CoordinateIndex] = Intermediates.MorphedWorldPosRaw.xy;
}
#endif //NUM_MATERIAL_TEXCOORDS_VERTEX
return Result;
}
FVertexFactoryIntermediates GetVertexFactoryIntermediates(FVertexFactoryInput Input)
{
FVertexFactoryIntermediates Intermediates;
// Get the packed instance data
float4 Data0 = Input.InstanceData0;
float4 Data1 = Input.InstanceData1;
const float3 Translation = Data0.xyz;
const float3 Scale = float3(Data1.zw, 1.0f);
const uint PackedDataChannel = asuint(Data1.x);
// Lod level is in first 8 bits and ShouldMorph bit is in the 9th bit
const float LODLevel = (float)(PackedDataChannel & 0xFF);
const uint ShouldMorph = ((PackedDataChannel >> 8) & 0x1);
// Calculate the world pos
Intermediates.OriginalWorldPos = float3(Input.Position.xy, 0.0f) * Scale + Translation;
#if VF_USE_PRIMITIVE_SCENE_DATA
Intermediates.PrimitiveId = Input.PrimitiveId;
#else
Intermediates.PrimitiveId = 0;
#endif
return Intermediates;
}
half3x3 VertexFactoryGetTangentToLocal(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates)
{
return half3x3(1,0,0,0,1,0,0,0,1);
}
float4 VertexFactoryGetRasterizedWorldPosition(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates, float4 InWorldPosition)
{
return InWorldPosition;
}
float3 VertexFactoryGetPositionForVertexLighting(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates, float3 TranslatedWorldPosition)
{
return TranslatedWorldPosition;
}
FVertexFactoryInterpolantsVSToPS VertexFactoryGetInterpolantsVSToPS(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates, FMaterialVertexParameters VertexParameters)
{
FVertexFactoryInterpolantsVSToPS Interpolants;
Interpolants = (FVertexFactoryInterpolantsVSToPS)0;
#if NUM_TEX_COORD_INTERPOLATORS
float2 CustomizedUVs[NUM_TEX_COORD_INTERPOLATORS];
GetMaterialCustomizedUVs(VertexParameters, CustomizedUVs);
GetCustomInterpolators(VertexParameters, CustomizedUVs);
UNROLL
for (int CoordinateIndex = 0; CoordinateIndex < NUM_TEX_COORD_INTERPOLATORS; CoordinateIndex++)
{
SetUV(Interpolants, CoordinateIndex, CustomizedUVs[CoordinateIndex]);
}
#endif
#if INSTANCED_STEREO
Interpolants.EyeIndex = 0;
#endif
SetPrimitiveId(Interpolants, Intermediates.PrimitiveId);
return Interpolants;
}
float4 VertexFactoryGetWorldPosition(FPositionOnlyVertexFactoryInput Input)
{
return Input.Position;
}
float4 VertexFactoryGetPreviousWorldPosition(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates)
{
float4x4 PreviousLocalToWorldTranslated = GetPrimitiveData(Intermediates.PrimitiveId).PreviousLocalToWorld;
PreviousLocalToWorldTranslated[3][0] += ResolvedView.PrevPreViewTranslation.x;
PreviousLocalToWorldTranslated[3][1] += ResolvedView.PrevPreViewTranslation.y;
PreviousLocalToWorldTranslated[3][2] += ResolvedView.PrevPreViewTranslation.z;
return mul(Input.Position, PreviousLocalToWorldTranslated);
}
float4 VertexFactoryGetTranslatedPrimitiveVolumeBounds(FVertexFactoryInterpolantsVSToPS Interpolants)
{
float4 ObjectWorldPositionAndRadius = GetPrimitiveData(GetPrimitiveId(Interpolants)).ObjectWorldPositionAndRadius;
return float4(ObjectWorldPositionAndRadius.xyz + ResolvedView.PreViewTranslation.xyz, ObjectWorldPositionAndRadius.w);
}
uint VertexFactoryGetPrimitiveId(FVertexFactoryInterpolantsVSToPS Interpolants)
{
return GetPrimitiveId(Interpolants);
}
float3 VertexFactoryGetWorldNormal(FPositionAndNormalOnlyVertexFactoryInput Input)
{
return Input.Normal.xyz;
}
float3 VertexFactoryGetWorldNormal(FVertexFactoryInput Input, FVertexFactoryIntermediates Intermediates)
{
return float3(0.0f, 0.0f, 1.0f);
}
由此可见,如果新增加了FVertexFactory的自定义类型,需要在HLSL实现以下接口:
- FVertexFactoryInput 定义输入到VS的数据布局,需要匹配c++侧的FVertexFactory的类型。
- FVertexFactoryIntermediates 用于存储将在多个顶点工厂函数中使用的缓存中间数据,比如TangentToLocal。
- FVertexFactoryInterpolantsVSToPS 从VS传递到PS的顶点工厂数据。
- VertexFactoryGetWorldPosition 从顶点着色器调用来获得世界空间的顶点位置。
- VertexFactoryGetInterpolantsVSToPS 转换FVertexFactoryInput到FVertexFactoryInterpolants,在硬件光栅化插值之前计算需要插值或传递到PS的数据。
- GetMaterialPixelParameters 由PS调用,根据FVertexFactoryInterpolants计算并填充FMaterialPixelParameters结构体。