36 KiB
title, date, excerpt, tags, rating
title | date | excerpt | tags | rating |
---|---|---|---|---|
Untitled | 2024-02-04 12:57:56 | ⭐ |
前言
原文地址:https://www.cnblogs.com/timlly/p/15156626.html
概念
- FRenderResource:是渲染线程的渲染资源基础父类,实际的数据和逻辑由子类实现。可以认为是渲染线程中承载CPU相关相关渲染的载体。
- 比如输入的顶点数据、顶点Index数据、贴图数据等。
- FRHIResource:抽象了GPU侧的资源,也是众多RHI资源类型的父类。可以认为是承载显卡API相关资源的载体。
- 比如TextureSampler、TextureObject等。
- FRHICommand:其父类为FRHICommandBase结构体。其含有FRHICommandBase* Next用来保存下一个Command的指针,所以存储他的结构为链表。
- 含有接口:void void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext& DebugContext)。执行完就销毁。
- UE使用FRHICOMMAND_MACRO宏来快速定义各种RHICommand。主要功能包含:
- 数据和资源的设置、更新、清理、转换、拷贝、回读。
- 图元绘制。
- Pass、SubPass、场景、ViewPort等的开始和结束事件。
- 栅栏、等待、广播接口。
- 光线追踪。
- Slate、调试相关的命令。
- FRHICommandList:是RHI的指令队列,用来管理、执行一组FRHICommand的对象。
- 其子类有FRHICommandListImmediate(立即执行队列)、FRHIComputeCommandList_RecursiveHazardous与TRHIComputeCommandList_RecursiveHazardous(命令列表的递归使用)
- IRHICommandContext:是RHI的命令上下文接口类,定义了一组图形API相关的操作。在可以并行处理命令列表的平台上,它是一个单独的对象类。
- 主要的接口函数有:
- 派发ComputeShader
- 渲染查询(可见性?)
- 相关开始/结束函数。
- 设置数据(Viewport、GraphicsPipelineState等)
- 设置ShadserParameter
- 绘制图元
- 纹理拷贝/更新
- Raytracing
- IRHICommandContext的接口和FRHICommandList的接口高度相似且重叠。IRHICommandContext还有许多子类:
- IRHICommandContextPSOFallback:不支持真正的图形管道的RHI命令上下文。
- FNullDynamicRHI:空实现的动态绑定RHI。
- FOpenGLDynamicRHI:OpenGL的动态RHI。
- FD3D11DynamicRHI:D3D11的动态RHI。
- FMetalRHICommandContext:Metal平台的命令上下文。
- FD3D12CommandContextBase:D3D12的命令上下文。
- FVulkanCommandListContext:Vulkan平台的命令队列上下文。
- FEmptyDynamicRHI:动态绑定的RHI实现的接口。
- FValidationContext:校验上下文。
- 主要的接口函数有:
- IRHICommandContextContainer:IRHICommandContextContainer就是包含了IRHICommandContext对象的类型。相当于存储了一个或一组命令上下文的容器,以支持并行化地提交命令队列,只在D3D12、Metal、Vulkan等现代图形API中有实现。
- D3D12存储了FD3D12Adapter* Adapter、FD3D12CommandContext* CmdContext、 FD3D12CommandContextRedirector* CmdContextRedirector。
- FDynamicRHI:FDynamicRHI是由动态绑定的RHI实现的接口,它定义的接口和CommandList、CommandContext比较相似。
- 代码详见#FDynamicRHI
- FRHICommandListExecutor:负责将Renderer层的RHI中间指令转译(或直接调用)到目标平台的图形API,它在RHI体系中起着举足轻重的作用。
- FParallelCommandListSet:用于实现并行渲染。使用案例详见#FParallelCommandListSet。目前5.3只有下面2个子类:
- FRDGParallelCommandListSet
- FShadowParallelCommandListSet
FDynamicRHI
class RHI_API FDynamicRHI
{
public:
virtual ~FDynamicRHI() {}
virtual void Init() = 0;
virtual void PostInit() {}
virtual void Shutdown() = 0;
void InitPixelFormatInfo(const TArray<uint32>& PixelFormatBlockBytesIn);
// ---- RHI接口 ----
// 下列接口要求FlushType: Thread safe
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) = 0;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) = 0;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) = 0;
virtual FBlendStateRHIRef RHICreateBlendState(const FBlendStateInitializerRHI& Initializer) = 0;
// 下列接口要求FlushType: Wait RHI Thread
virtual FVertexDeclarationRHIRef RHICreateVertexDeclaration(const FVertexDeclarationElementList& Elements) = 0;
virtual FPixelShaderRHIRef RHICreatePixelShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FVertexShaderRHIRef RHICreateVertexShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FHullShaderRHIRef RHICreateHullShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FDomainShaderRHIRef RHICreateDomainShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FGeometryShaderRHIRef RHICreateGeometryShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FComputeShaderRHIRef RHICreateComputeShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
// FlushType: Must be Thread-Safe.
virtual FRenderQueryPoolRHIRef RHICreateRenderQueryPool(ERenderQueryType QueryType, uint32 NumQueries = UINT32_MAX);
inline FComputeFenceRHIRef RHICreateComputeFence(const FName& Name);
virtual FGPUFenceRHIRef RHICreateGPUFence(const FName &Name);
virtual void RHICreateTransition(FRHITransition* Transition, ERHIPipeline SrcPipelines, ERHIPipeline DstPipelines, ERHICreateTransitionFlags CreateFlags, TArrayView<const FRHITransitionInfo> Infos);
virtual void RHIReleaseTransition(FRHITransition* Transition);
// FlushType: Thread safe.
virtual FStagingBufferRHIRef RHICreateStagingBuffer();
virtual void* RHILockStagingBuffer(FRHIStagingBuffer* StagingBuffer, FRHIGPUFence* Fence, uint32 Offset, uint32 SizeRHI);
virtual void RHIUnlockStagingBuffer(FRHIStagingBuffer* StagingBuffer);
// FlushType: Thread safe, but varies depending on the RHI
virtual FBoundShaderStateRHIRef RHICreateBoundShaderState(FRHIVertexDeclaration* VertexDeclaration, FRHIVertexShader* VertexShader, FRHIHullShader* HullShader, FRHIDomainShader* DomainShader, FRHIPixelShader* PixelShader, FRHIGeometryShader* GeometryShader) = 0;
// FlushType: Thread safe
virtual FGraphicsPipelineStateRHIRef RHICreateGraphicsPipelineState(const FGraphicsPipelineStateInitializer& Initializer);
// FlushType: Thread safe, but varies depending on the RHI
virtual FUniformBufferRHIRef RHICreateUniformBuffer(const void* Contents, const FRHIUniformBufferLayout& Layout, EUniformBufferUsage Usage, EUniformBufferValidation Validation) = 0;
virtual void RHIUpdateUniformBuffer(FRHIUniformBuffer* UniformBufferRHI, const void* Contents) = 0;
// FlushType: Wait RHI Thread
virtual FIndexBufferRHIRef RHICreateIndexBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
virtual void* RHILockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer, uint32 Offset, uint32 Size, EResourceLockMode LockMode);
virtual void RHIUnlockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer);
virtual void RHITransferIndexBufferUnderlyingResource(FRHIIndexBuffer* DestIndexBuffer, FRHIIndexBuffer* SrcIndexBuffer);
// FlushType: Wait RHI Thread
virtual FVertexBufferRHIRef RHICreateVertexBuffer(uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
// FlushType: Flush RHI Thread
virtual void* RHILockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
virtual void RHIUnlockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer);
// FlushType: Flush Immediate (seems dangerous)
virtual void RHICopyVertexBuffer(FRHIVertexBuffer* SourceBuffer, FRHIVertexBuffer* DestBuffer) = 0;
virtual void RHITransferVertexBufferUnderlyingResource(FRHIVertexBuffer* DestVertexBuffer, FRHIVertexBuffer* SrcVertexBuffer);
// FlushType: Wait RHI Thread
virtual FStructuredBufferRHIRef RHICreateStructuredBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
// FlushType: Flush RHI Thread
virtual void* RHILockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
virtual void RHIUnlockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer);
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHIStructuredBuffer* StructuredBuffer, bool bUseUAVCounter, bool bAppendBuffer) = 0;
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel) = 0;
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel, uint8 Format);
(......)
// RHI帧更新,须从主线程调用,FlushType: Thread safe
virtual void RHITick(float DeltaTime) = 0;
// 阻塞CPU直到GPU执行完成变成空闲. FlushType: Flush Immediate (seems wrong)
virtual void RHIBlockUntilGPUIdle() = 0;
// 开始当前帧,并确保GPU正在积极地工作 FlushType: Flush Immediate (copied from RHIBlockUntilGPUIdle)
virtual void RHISubmitCommandsAndFlushGPU() {};
// 通知RHI准备暂停它.
virtual void RHIBeginSuspendRendering() {};
// 暂停RHI渲染并将控制权交给系统的操作, FlushType: Thread safe
virtual void RHISuspendRendering() {};
// 继续RHI渲染, FlushType: Thread safe
virtual void RHIResumeRendering() {};
// FlushType: Flush Immediate
virtual bool RHIIsRenderingSuspended() { return false; };
// FlushType: called from render thread when RHI thread is flushed
// 仅在FRHIResource::FlushPendingDeletes内的延迟删除之前每帧调用.
virtual void RHIPerFrameRHIFlushComplete();
// 执行命令队列, FlushType: Wait RHI Thread
virtual void RHIExecuteCommandList(FRHICommandList* CmdList) = 0;
// FlushType: Flush RHI Thread
virtual void* RHIGetNativeDevice() = 0;
// FlushType: Flush RHI Thread
virtual void* RHIGetNativeInstance() = 0;
// 获取命令上下文. FlushType: Thread safe
virtual IRHICommandContext* RHIGetDefaultContext() = 0;
// 获取计算上下文. FlushType: Thread safe
virtual IRHIComputeContext* RHIGetDefaultAsyncComputeContext();
// FlushType: Thread safe
virtual class IRHICommandContextContainer* RHIGetCommandContextContainer(int32 Index, int32 Num) = 0;
// 直接由渲染线程调用的接口, 以优化RHI调用.
virtual FVertexBufferRHIRef CreateAndLockVertexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
virtual FIndexBufferRHIRef CreateAndLockIndexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
(......)
// Buffer Lock/Unlock
virtual void* LockVertexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
virtual void* LockIndexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
(......)
};
以上只显示了部分接口,其中部分接口要求从渲染线程调用,部分须从游戏线程调用。大多数接口在被调用前需刷新指定类型的命令,比如:
class RHI_API FDynamicRHI
{
// FlushType: Wait RHI Thread
void RHIExecuteCommandList(FRHICommandList* CmdList);
// FlushType: Flush Immediate
void RHIBlockUntilGPUIdle();
// FlushType: Thread safe
void RHITick(float DeltaTime);
};
可以在FRHICommandListImmediate的ExecuteCommandList()、BlockUntilGPUIdle()、Tick() 看到调用。
需要注意的是,传统图形API(D3D11、OpenGL)除了继承FDynamicRHI,还需要继承IRHICommandContextPSOFallback,因为需要借助后者的接口处理PSO的数据和行为,以保证传统和现代API对PSO的一致处理行为。也正因为此,现代图形API(D3D12、Vulkan、Metal)不需要继承IRHICommandContext的任何继承体系的类型,单单直接继承FDynamicRHI就可以处理RHI层的所有数据和操作。 既然现代图形API(D3D12、Vulkan、Metal)的DynamicRHI没有继承IRHICommandContext的任何继承体系的类型,那么它们是如何实现FDynamicRHI::RHIGetDefaultContext的接口?下面以FD3D12DynamicRHI为例:
FParallelCommandListSet
//Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp
void FDeferredShadingSceneRenderer::RenderPrePass(FRDGBuilder& GraphBuilder, FRDGTextureRef SceneDepthTexture, FInstanceCullingManager& InstanceCullingManager, FRDGTextureRef* FirstStageDepthBuffer)
{
RDG_EVENT_SCOPE(GraphBuilder, "PrePass %s %s", GetDepthDrawingModeString(DepthPass.EarlyZPassMode), GetDepthPassReason(DepthPass.bDitheredLODTransitionsUseStencil, ShaderPlatform));
RDG_CSV_STAT_EXCLUSIVE_SCOPE(GraphBuilder, RenderPrePass);
RDG_GPU_STAT_SCOPE(GraphBuilder, Prepass);
SCOPED_NAMED_EVENT(FDeferredShadingSceneRenderer_RenderPrePass, FColor::Emerald);
SCOPE_CYCLE_COUNTER(STAT_DepthDrawTime);
const bool bParallelDepthPass = GRHICommandList.UseParallelAlgorithms() && CVarParallelPrePass.GetValueOnRenderThread();
RenderPrePassHMD(GraphBuilder, SceneDepthTexture);
if (DepthPass.IsRasterStencilDitherEnabled())
{
AddDitheredStencilFillPass(GraphBuilder, Views, SceneDepthTexture, DepthPass);
}
auto RenderDepthPass = [&](uint8 DepthMeshPass)
{
check(DepthMeshPass == EMeshPass::DepthPass || DepthMeshPass == EMeshPass::SecondStageDepthPass);
const bool bSecondStageDepthPass = DepthMeshPass == EMeshPass::SecondStageDepthPass;
if (bParallelDepthPass)
{
RDG_WAIT_FOR_TASKS_CONDITIONAL(GraphBuilder, IsDepthPassWaitForTasksEnabled());
for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
{
FViewInfo& View = Views[ViewIndex];
RDG_GPU_MASK_SCOPE(GraphBuilder, View.GPUMask);
RDG_EVENT_SCOPE_CONDITIONAL(GraphBuilder, Views.Num() > 1, "View%d", ViewIndex);
FMeshPassProcessorRenderState DrawRenderState;
SetupDepthPassState(DrawRenderState);
const bool bShouldRenderView = View.ShouldRenderView() && (bSecondStageDepthPass ? View.bUsesSecondStageDepthPass : true);
if (bShouldRenderView)
{
View.BeginRenderView();
FDepthPassParameters* PassParameters = GetDepthPassParameters(GraphBuilder, View, SceneDepthTexture);
View.ParallelMeshDrawCommandPasses[DepthMeshPass].BuildRenderingCommands(GraphBuilder, Scene->GPUScene, PassParameters->InstanceCullingDrawParams);
GraphBuilder.AddPass(
bSecondStageDepthPass ? RDG_EVENT_NAME("SecondStageDepthPassParallel") : RDG_EVENT_NAME("DepthPassParallel"),
PassParameters,
ERDGPassFlags::Raster | ERDGPassFlags::SkipRenderPass,
[this, &View, PassParameters, DepthMeshPass](const FRDGPass* InPass, FRHICommandListImmediate& RHICmdList)
{
//并行渲染逻辑主要在这里
FRDGParallelCommandListSet ParallelCommandListSet(InPass, RHICmdList, GET_STATID(STAT_CLP_Prepass), View, FParallelCommandListBindings(PassParameters));
ParallelCommandListSet.SetHighPriority();
View.ParallelMeshDrawCommandPasses[DepthMeshPass].DispatchDraw(&ParallelCommandListSet, RHICmdList, &PassParameters->InstanceCullingDrawParams);
});
RenderPrePassEditorPrimitives(GraphBuilder, View, PassParameters, DrawRenderState, DepthPass.EarlyZPassMode, InstanceCullingManager);
}
}
}
···
}
//Engine\Source\Runtime\Renderer\Private\MeshDrawCommands.cpp
void FParallelMeshDrawCommandPass::DispatchDraw(FParallelCommandListSet* ParallelCommandListSet, FRHICommandList& RHICmdList, const FInstanceCullingDrawParams* InstanceCullingDrawParams) const
{
TRACE_CPUPROFILER_EVENT_SCOPE(ParallelMdcDispatchDraw);
if (MaxNumDraws <= 0)
{
return;
}
FMeshDrawCommandOverrideArgs OverrideArgs;
if (InstanceCullingDrawParams)
{
OverrideArgs = GetMeshDrawCommandOverrideArgs(*InstanceCullingDrawParams);
}
if (ParallelCommandListSet)
{
const ENamedThreads::Type RenderThread = ENamedThreads::GetRenderThread();
FGraphEventArray Prereqs;
if (ParallelCommandListSet->GetPrereqs())
{
Prereqs.Append(*ParallelCommandListSet->GetPrereqs());
}
if (TaskEventRef.IsValid())
{
Prereqs.Add(TaskEventRef);
}
// Distribute work evenly to the available task graph workers based on NumEstimatedDraws.
// Every task will then adjust it's working range based on FVisibleMeshDrawCommandProcessTask results.
const int32 NumThreads = FMath::Min<int32>(FTaskGraphInterface::Get().GetNumWorkerThreads(), ParallelCommandListSet->Width);
const int32 NumTasks = FMath::Min<int32>(NumThreads, FMath::DivideAndRoundUp(MaxNumDraws, ParallelCommandListSet->MinDrawsPerCommandList));
const int32 NumDrawsPerTask = FMath::DivideAndRoundUp(MaxNumDraws, NumTasks);
for (int32 TaskIndex = 0; TaskIndex < NumTasks; TaskIndex++)
{
const int32 StartIndex = TaskIndex * NumDrawsPerTask;
const int32 NumDraws = FMath::Min(NumDrawsPerTask, MaxNumDraws - StartIndex);
checkSlow(NumDraws > 0);
FRHICommandList* CmdList = ParallelCommandListSet->NewParallelCommandList();
FGraphEventRef AnyThreadCompletionEvent = TGraphTask<FDrawVisibleMeshCommandsAnyThreadTask>::CreateTask(&Prereqs, RenderThread)
.ConstructAndDispatchWhenReady(*CmdList, TaskContext.InstanceCullingContext, TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet,
OverrideArgs,
TaskContext.InstanceFactor,
TaskIndex, NumTasks);
ParallelCommandListSet->AddParallelCommandList(CmdList, AnyThreadCompletionEvent, NumDraws);
}
}
else
{
QUICK_SCOPE_CYCLE_COUNTER(STAT_MeshPassDrawImmediate);
WaitForMeshPassSetupTask(IsInActualRenderingThread() ? EWaitThread::Render : EWaitThread::Task);
if (TaskContext.bUseGPUScene)
{
if (TaskContext.MeshDrawCommands.Num() > 0)
{
TaskContext.InstanceCullingContext.SubmitDrawCommands(
TaskContext.MeshDrawCommands,
TaskContext.MinimalPipelineStatePassSet,
OverrideArgs,
0,
TaskContext.MeshDrawCommands.Num(),
TaskContext.InstanceFactor,
RHICmdList);
}
}
else
{
SubmitMeshDrawCommandsRange(TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, nullptr, 0, 0, TaskContext.bDynamicInstancing, 0, TaskContext.MeshDrawCommands.Num(), TaskContext.InstanceFactor, RHICmdList);
}
}
}
普通Pass渲染
// 代码为UE5旧版本代码
// Engine\Source\Runtime\RHI\Public\RHIResources.h
// 渲染通道信息.
struct FRHIRenderPassInfo
{
// 渲染纹理信息.
struct FColorEntry
{
FRHITexture* RenderTarget;
FRHITexture* ResolveTarget;
int32 ArraySlice;
uint8 MipIndex;
ERenderTargetActions Action;
};
FColorEntry ColorRenderTargets[MaxSimultaneousRenderTargets];
// 深度模板信息.
struct FDepthStencilEntry
{
FRHITexture* DepthStencilTarget;
FRHITexture* ResolveTarget;
EDepthStencilTargetActions Action;
FExclusiveDepthStencil ExclusiveDepthStencil;
};
FDepthStencilEntry DepthStencilRenderTarget;
// 解析参数.
FResolveParams ResolveParameters;
// 部分RHI可以使用纹理来控制不同区域的采样和/或阴影分辨率
FTextureRHIRef FoveationTexture = nullptr;
// 部分RHI需要一个提示,遮挡查询将在这个渲染通道中使用
uint32 NumOcclusionQueries = 0;
bool bOcclusionQueries = false;
// 部分RHI需要知道,在为部分资源转换生成mip映射的情况下,这个渲染通道是否将读取和写入相同的纹理.
bool bGeneratingMips = false;
// 如果这个renderpass应该是多视图,则需要多少视图.
uint8 MultiViewCount = 0;
// 部分RHI的提示,渲染通道将有特定的子通道.
ESubpassHint SubpassHint = ESubpassHint::None;
// 是否太多UAV.
bool bTooManyUAVs = false;
bool bIsMSAA = false;
// 不同的构造函数.
// Color, no depth, optional resolve, optional mip, optional array slice
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveRT = nullptr, uint32 InMipIndex = 0, int32 InArraySlice = -1);
// Color MRTs, no depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction);
// Color MRTs, no depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveTargets[]);
// Color MRTs and depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color MRTs and depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveRTs[], FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Depth, no color
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Depth, no color, occlusion queries
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, uint32 InNumOcclusionQueries, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth with resolve
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth with resolve and optional sample density
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FRHITexture* InFoveationTexture, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
enum ENoRenderTargets
{
NoRenderTargets,
};
explicit FRHIRenderPassInfo(ENoRenderTargets Dummy);
explicit FRHIRenderPassInfo();
inline int32 GetNumColorRenderTargets() const;
RHI_API void Validate() const;
RHI_API void ConvertToRenderTargetsInfo(FRHISetRenderTargetsInfo& OutRTInfo) const;
(......)
};
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
public:
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
{
if (InInfo.bTooManyUAVs)
{
UE_LOG(LogRHI, Warning, TEXT("RenderPass %s has too many UAVs"));
}
InInfo.Validate();
// 直接调用RHI的接口.
if (Bypass())
{
GetContext().RHIBeginRenderPass(InInfo, Name);
}
// 分配RHI命令.
else
{
TCHAR* NameCopy = AllocString(Name);
ALLOC_COMMAND(FRHICommandBeginRenderPass)(InInfo, NameCopy);
}
// 设置在RenderPass内标记.
Data.bInsideRenderPass = true;
// 缓存活动的RT.
CacheActiveRenderTargets(InInfo);
// 重置子Pass.
ResetSubpass(InInfo.SubpassHint);
Data.bInsideRenderPass = true;
}
void EndRenderPass()
{
// 调用或分配RHI接口.
if (Bypass())
{
GetContext().RHIEndRenderPass();
}
else
{
ALLOC_COMMAND(FRHICommandEndRenderPass)();
}
// 重置在RenderPass内标记.
Data.bInsideRenderPass = false;
// 重置子Pass标记为None.
ResetSubpass(ESubpassHint::None);
}
};
它们的使用案例如下:
主要是FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore)
与RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"))
bool FRHIDrawTests::Test_MultiDrawIndirect(FRHICommandListImmediate& RHICmdList)
{
if (!GRHIGlobals.SupportsMultiDrawIndirect)
{
return true;
}
// Probably could/should automatically enable in the outer scope when running RHI Unit Tests
// RenderCaptureInterface::FScopedCapture RenderCapture(true /*bEnable*/, &RHICmdList, TEXT("Test_MultiDrawIndirect"));
static constexpr uint32 MaxInstances = 8;
// D3D12 does not have a way to get the base instance ID (SV_InstanceID always starts from 0), so we must emulate it...
const uint32 InstanceIDs[MaxInstances] = { 0, 1, 2, 3, 4, 5, 6, 7 };
FBufferRHIRef InstanceIDBuffer = CreateBufferWithData(EBufferUsageFlags::VertexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_InstanceID"), MakeArrayView(InstanceIDs));
FVertexDeclarationElementList VertexDeclarationElements;
VertexDeclarationElements.Add(FVertexElement(0, 0, VET_UInt, 0, 4, true /*per instance frequency*/));
FVertexDeclarationRHIRef VertexDeclarationRHI = PipelineStateCache::GetOrCreateVertexDeclaration(VertexDeclarationElements);
const uint16 Indices[3] = { 0, 1, 2 };
FBufferRHIRef IndexBuffer = CreateBufferWithData(EBufferUsageFlags::IndexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_IndexBuffer"), MakeArrayView(Indices));
static constexpr uint32 OutputBufferStride = sizeof(uint32);
static constexpr uint32 OutputBufferSize = OutputBufferStride * MaxInstances;
FRHIResourceCreateInfo OutputBufferCreateInfo(TEXT("Test_MultiDrawIndirect_OutputBuffer"));
FBufferRHIRef OutputBuffer = RHICmdList.CreateBuffer(OutputBufferSize, EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::SourceCopy, OutputBufferStride, ERHIAccess::UAVCompute, OutputBufferCreateInfo);
const uint32 CountValues[4] = { 1, 1, 16, 0 };
FBufferRHIRef CountBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess, ERHIAccess::IndirectArgs, TEXT("Test_MultiDrawIndirect_Count"), MakeArrayView(CountValues));
const FRHIDrawIndexedIndirectParameters DrawArgs[] =
{
// IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation
{3, 1, 0, 0, 0}, // fill slot 0
// gap in slot 1
{3, 2, 0, 0, 2}, // fill slots 2, 3 using 1 sub-draw
// gap in slot 4
{3, 1, 0, 0, 5}, // fill slots 5, 6 using 2 sub-draws
{3, 1, 0, 0, 6},
{3, 1, 0, 0, 7}, // this draw is expected to never execute
};
const uint32 ExpectedDrawnInstances[MaxInstances] = { 1, 0, 1, 1, 0, 1, 1, 0 };
FBufferRHIRef DrawArgBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::VertexBuffer, ERHIAccess::IndirectArgs,
TEXT("Test_MultiDrawIndirect_DrawArgs"), MakeArrayView(DrawArgs));
FUnorderedAccessViewRHIRef OutputBufferUAV = RHICmdList.CreateUnorderedAccessView(OutputBuffer,
FRHIViewDesc::CreateBufferUAV()
.SetType(FRHIViewDesc::EBufferType::Typed)
.SetFormat(PF_R32_UINT));
RHICmdList.ClearUAVUint(OutputBufferUAV, FUintVector4(0));
const FIntPoint RenderTargetSize(4, 4);
FRHITextureDesc RenderTargetTextureDesc(ETextureDimension::Texture2D, ETextureCreateFlags::RenderTargetable, PF_B8G8R8A8, FClearValueBinding(), RenderTargetSize, 1, 1, 1, 1, 0);
FRHITextureCreateDesc RenderTargetCreateDesc(RenderTargetTextureDesc, ERHIAccess::RTV, TEXT("Test_MultiDrawIndirect_RenderTarget"));
FTextureRHIRef RenderTarget = RHICreateTexture(RenderTargetCreateDesc);
TShaderMapRef<FTestDrawInstancedVS> VertexShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
TShaderMapRef<FTestDrawInstancedPS> PixelShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
FGraphicsPipelineStateInitializer GraphicsPSOInit;
GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = VertexDeclarationRHI;
GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();
GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState<false, CF_Always>::GetRHI();
GraphicsPSOInit.BlendState = TStaticBlendState<>::GetRHI();
GraphicsPSOInit.RasterizerState = TStaticRasterizerState<>::GetRHI();
GraphicsPSOInit.PrimitiveType = EPrimitiveType::PT_TriangleList;
FRHITexture* ColorRTs[1] = { RenderTarget.GetReference() };
FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore);
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVCompute, ERHIAccess::UAVGraphics, EResourceTransitionFlags::None));
RHICmdList.BeginUAVOverlap(); // Output UAV can be written without syncs between draws (each draw is expected to write into different slots)
RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"));
RHICmdList.SetViewport(0, 0, 0, float(RenderTargetSize.X), float(RenderTargetSize.Y), 1);
RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit, 0);
check(InstanceIDBuffer->GetStride() == 4);
RHICmdList.SetStreamSource(0, InstanceIDBuffer, 0);
FRHIBatchedShaderParameters ShaderParameters;
ShaderParameters.SetUAVParameter(PixelShader->OutDrawnInstances.GetBaseIndex(), OutputBufferUAV);
RHICmdList.SetBatchedShaderParameters(PixelShader.GetPixelShader(), ShaderParameters);
const uint32 DrawArgsStride = sizeof(DrawArgs[0]);
const uint32 CountStride = sizeof(CountValues[0]);
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
DrawArgBuffer, DrawArgsStride*0, // 1 sub-draw with instance index 0
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
5 // expect to draw only 1 instance due to GPU-side upper bound
);
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
DrawArgBuffer, DrawArgsStride*1, // 1 sub-draw with 2 instances at base index 2
CountBuffer, CountStride*1, // count buffer contains 1 in this slot
4 // expect to draw only 1 instance due to GPU-side upper bound
);
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
DrawArgBuffer, DrawArgsStride*2, // 2 sub-draws with 1 instance each starting at base index 5
CountBuffer, CountStride*2, // count buffer contains 16 in this slot
2 // expect to draw only 2 instances due to CPU-side upper bound
);
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
CountBuffer, CountStride*3, // count buffer contains 0 in this slot
1 // expect to skip the draw due to GPU-side count of 0
);
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
0 // expect to skip the draw due to CPU-side count of 0
);
RHICmdList.EndRenderPass();
RHICmdList.EndUAVOverlap();
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVGraphics, ERHIAccess::CopySrc, EResourceTransitionFlags::None));
TConstArrayView<uint8> ExpectedOutputView = MakeArrayView(reinterpret_cast<const uint8*>(ExpectedDrawnInstances), sizeof(ExpectedDrawnInstances));
bool bSucceeded = FRHIBufferTests::VerifyBufferContents(TEXT("Test_MultiDrawIndirect"), RHICmdList, OutputBuffer, ExpectedOutputView);
return bSucceeded;
}
Subpass
先说一下Subpass的由来、作用和特点。
在传统的多Pass渲染中,每个Pass结束时通常会渲染出一组渲染纹理,部分成为着色器参数提供给下一个Pass采样读取。这种纹理采样方式不受任何限制,可以读取任意的领域像素,使用任意的纹理过滤方式。这种方式虽然使用灵活,但在TBR(Tile-Based Renderer)硬件架构的设备中会有较大的消耗:渲染纹理的Pass通常会将渲染结果存储在On-chip的Tile Memory中,待Pass结束后会写回GPU显存(VRAM)中,写回GPU显存是个耗时耗耗电的操作。
传统多Pass之间的内存存取模型,多次发生于On-Chip和全局存储器之间。
如果出现一种特殊的纹理使用情况:上一个Pass渲染处理的纹理,立即被下一个Pass使用,并且下一个Pass只采样像素位置自身的数据,而不需要采样邻域像素的位置。这种情况就符合了Subpass的使用情景。使用Subpass渲染的纹理结果只会存储在Tile Memory中,在Subpass结束后不会写回VRAM,而直接提供Tile Memory的数据给下一个Subpass采样读取。这样就避免了传统Pass结束写回GPU显存以及下一个Pass又从GPU显存读数据的耗时耗电操作,从而提升了性能。
Subpass之间的内存存取模型,都发生在On-Chip内。
Subpass的相关代码主要集中在移动端中。UE涉及Subpass的接口和类型如下:
// 提供给RHI的Subpass标记.
enum class ESubpassHint : uint8
{
None, // 传统渲染(非Subpass)
DepthReadSubpass, // 深度读取Subpass.
DeferredShadingSubpass, // 移动端延迟着色Subpass.
};
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class RHI_API FRHICommandListBase : public FNoncopyable
{
(......)
protected:
// PSO上下文.
struct FPSOContext
{
uint32 CachedNumSimultanousRenderTargets = 0;
TStaticArray<FRHIRenderTargetView, MaxSimultaneousRenderTargets> CachedRenderTargets;
FRHIDepthRenderTargetView CachedDepthStencilTarget;
// Subpass提示标记.
ESubpassHint SubpassHint = ESubpassHint::None;
uint8 SubpassIndex = 0;
uint8 MultiViewCount = 0;
bool HasFragmentDensityAttachment = false;
} PSOContext;
};
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
public:
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
{
(......)
CacheActiveRenderTargets(InInfo);
// 设置Subpass数据.
ResetSubpass(InInfo.SubpassHint);
Data.bInsideRenderPass = true;
}
void EndRenderPass()
{
(......)
// 重置Subpass标记为None.
ResetSubpass(ESubpassHint::None);
}
// 下一个Subpass.
void NextSubpass()
{
// 分配或调用RHI接口.
if (Bypass())
{
GetContext().RHINextSubpass();
}
else
{
ALLOC_COMMAND(FRHICommandNextSubpass)();
}
// 增加Subpass计数.
IncrementSubpass();
}
// 增加subpass计数.
void IncrementSubpass()
{
PSOContext.SubpassIndex++;
}
// 重置Subpass数据.
void ResetSubpass(ESubpassHint SubpassHint)
{
PSOContext.SubpassHint = SubpassHint;
PSOContext.SubpassIndex = 0;
}
};