816 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			816 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
title: Untitled
 | 
						||
date: 2025-02-11 11:30:34
 | 
						||
excerpt: 
 | 
						||
tags: 
 | 
						||
rating: ⭐
 | 
						||
---
 | 
						||
 | 
						||
# FSortedLightSetSceneInfo
 | 
						||
有序的光源集合相关定义:
 | 
						||
```c++
 | 
						||
/** Data for a simple dynamic light. */  
 | 
						||
class FSimpleLightEntry  
 | 
						||
{  
 | 
						||
public:  
 | 
						||
    FVector3f Color;  
 | 
						||
    float Radius;  
 | 
						||
    float Exponent;  
 | 
						||
    float InverseExposureBlend = 0.0f;  
 | 
						||
    float VolumetricScatteringIntensity;  
 | 
						||
    bool bAffectTranslucency;  
 | 
						||
};
 | 
						||
 | 
						||
struct FSortedLightSceneInfo  
 | 
						||
{  
 | 
						||
    union  
 | 
						||
    {  
 | 
						||
       struct  
 | 
						||
       {  
 | 
						||
          // Note: the order of these members controls the light sort order!  
 | 
						||
          // Currently bHandledByLumen is the MSB and LightType is LSB          /** The type of light. */          uint32 LightType : LightType_NumBits;  
 | 
						||
          /** Whether the light has a texture profile. */  
 | 
						||
          uint32 bTextureProfile : 1;  
 | 
						||
          /** Whether the light uses a light function. */  
 | 
						||
          uint32 bLightFunction : 1;  
 | 
						||
          /** Whether the light uses lighting channels. */  
 | 
						||
          uint32 bUsesLightingChannels : 1;  
 | 
						||
          /** Whether the light casts shadows. */  
 | 
						||
          uint32 bShadowed : 1;  
 | 
						||
          /** Whether the light is NOT a simple light - they always support tiled/clustered but may want to be selected separately. */  
 | 
						||
          uint32 bIsNotSimpleLight : 1;  
 | 
						||
          /* We want to sort the lights that write into the packed shadow mask (when enabled) to the front of the list so we don't waste slots in the packed shadow mask. */  
 | 
						||
          uint32 bDoesNotWriteIntoPackedShadowMask : 1;  
 | 
						||
          /**   
 | 
						||
           * True if the light doesn't support clustered deferred, logic is inverted so that lights that DO support clustered deferred will sort first in list   
 | 
						||
           * Super-set of lights supporting tiled, so the tiled lights will end up in the first part of this range.  
 | 
						||
           */          
 | 
						||
           uint32 bClusteredDeferredNotSupported : 1;  
 | 
						||
          /** Whether the light should be handled by Lumen's Final Gather, these will be sorted to the end so they can be skipped */  
 | 
						||
          uint32 bHandledByLumen : 1;  
 | 
						||
       } Fields;  
 | 
						||
       /** Sort key bits packed into an integer. */  
 | 
						||
       int32 Packed;  
 | 
						||
    } SortKey;  
 | 
						||
  
 | 
						||
    const FLightSceneInfo* LightSceneInfo;  
 | 
						||
    int32 SimpleLightIndex;  
 | 
						||
  
 | 
						||
    /** Initialization constructor. */  
 | 
						||
    explicit FSortedLightSceneInfo(const FLightSceneInfo* InLightSceneInfo)  
 | 
						||
       : LightSceneInfo(InLightSceneInfo),  
 | 
						||
       SimpleLightIndex(-1)  
 | 
						||
    {       
 | 
						||
	    SortKey.Packed = 0;  
 | 
						||
		SortKey.Fields.bIsNotSimpleLight = 1;  
 | 
						||
    }  
 | 
						||
    explicit FSortedLightSceneInfo(int32 InSimpleLightIndex)  
 | 
						||
       : LightSceneInfo(nullptr),  
 | 
						||
       SimpleLightIndex(InSimpleLightIndex)  
 | 
						||
    {   
 | 
						||
        SortKey.Packed = 0;  
 | 
						||
		SortKey.Fields.bIsNotSimpleLight = 0;  
 | 
						||
    }};  
 | 
						||
  
 | 
						||
/**   
 | 
						||
 * Stores info about sorted lights and ranges.   
 | 
						||
 * The sort-key in FSortedLightSceneInfo gives rise to the following order:  
 | 
						||
 *  [SimpleLights,Clustered,UnbatchedLights,LumenLights] * Note that some shadowed lights can be included in the clustered pass when virtual shadow maps and one pass projection are used. */struct FSortedLightSetSceneInfo  
 | 
						||
{  
 | 
						||
    int32 SimpleLightsEnd;  
 | 
						||
    int32 ClusteredSupportedEnd;  
 | 
						||
  
 | 
						||
    /** First light with shadow map or */  
 | 
						||
    int32 UnbatchedLightStart;  
 | 
						||
  
 | 
						||
    int32 LumenLightStart;  
 | 
						||
  
 | 
						||
    FSimpleLightArray SimpleLights;  
 | 
						||
    TArray<FSortedLightSceneInfo, SceneRenderingAllocator> SortedLights;  
 | 
						||
};
 | 
						||
```
 | 
						||
 | 
						||
## 开始获取有序光源集合
 | 
						||
UE的光源分配由`FDeferredShadingSceneRenderer::Render`内的`bComputeLightGrid`变量决定的,bComputeLightGrid的赋值逻辑如下:
 | 
						||
```c++
 | 
						||
void FDeferredShadingSceneRenderer::Render(FRHICommandListImmediate& RHICmdList) {
 | 
						||
...
 | 
						||
	bool bComputeLightGrid = false;
 | 
						||
 | 
						||
	if (RendererOutput == ERendererOutput::FinalSceneColor)
 | 
						||
	{
 | 
						||
		if (bUseVirtualTexturing)
 | 
						||
		{
 | 
						||
			// Note, should happen after the GPU-Scene update to ensure rendering to runtime virtual textures is using the correctly updated scene
 | 
						||
			FVirtualTextureSystem::Get().EndUpdate(GraphBuilder, MoveTemp(VirtualTextureUpdater), FeatureLevel);
 | 
						||
		}
 | 
						||
 | 
						||
#if RHI_RAYTRACING
 | 
						||
		GatherRayTracingWorldInstancesForView(GraphBuilder, ReferenceView, RayTracingScene, InitViewTaskDatas.RayTracingRelevantPrimitives);
 | 
						||
#endif // RHI_RAYTRACING
 | 
						||
 | 
						||
		bool bAnyLumenEnabled = false;
 | 
						||
 | 
						||
		{
 | 
						||
			if (bUseGBuffer)
 | 
						||
			{
 | 
						||
				bComputeLightGrid = bRenderDeferredLighting;
 | 
						||
			}
 | 
						||
			else
 | 
						||
			{
 | 
						||
				bComputeLightGrid = ViewFamily.EngineShowFlags.Lighting;
 | 
						||
			}
 | 
						||
 | 
						||
			for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
 | 
						||
			{
 | 
						||
				FViewInfo& View = Views[ViewIndex];
 | 
						||
				bAnyLumenEnabled = bAnyLumenEnabled
 | 
						||
					|| GetViewPipelineState(View).DiffuseIndirectMethod == EDiffuseIndirectMethod::Lumen
 | 
						||
					|| GetViewPipelineState(View).ReflectionsMethod == EReflectionsMethod::Lumen;
 | 
						||
			}
 | 
						||
 | 
						||
			bComputeLightGrid |= (
 | 
						||
				ShouldRenderVolumetricFog() ||
 | 
						||
				VolumetricCloudWantsToSampleLocalLights(Scene, ViewFamily.EngineShowFlags) ||
 | 
						||
				ViewFamily.ViewMode != VMI_Lit ||
 | 
						||
				bAnyLumenEnabled ||
 | 
						||
				VirtualShadowMapArray.IsEnabled() ||
 | 
						||
				ShouldVisualizeLightGrid());
 | 
						||
		}
 | 
						||
	}
 | 
						||
...
 | 
						||
}	
 | 
						||
```
 | 
						||
 | 
						||
获取有序的光源集合
 | 
						||
```c++
 | 
						||
void FDeferredShadingSceneRenderer::Render(FRHICommandListImmediate& RHICmdList) {
 | 
						||
...
 | 
						||
	// 有序的光源集合.
 | 
						||
	FSortedLightSetSceneInfo& SortedLightSet = *GraphBuilder.AllocObject<FSortedLightSetSceneInfo>();  
 | 
						||
	{  
 | 
						||
	    RDG_CSV_STAT_EXCLUSIVE_SCOPE(GraphBuilder, SortLights);  
 | 
						||
	    RDG_GPU_STAT_SCOPE(GraphBuilder, SortLights);  
 | 
						||
	    ComputeLightGridOutput = GatherLightsAndComputeLightGrid(GraphBuilder, bComputeLightGrid, SortedLightSet);  
 | 
						||
	}
 | 
						||
...
 | 
						||
}	
 | 
						||
```
 | 
						||
 | 
						||
PS. 简单光源都可以被分块或分簇渲染,但对于非简单光源,只有满足以下条件的光源才可被分块或分簇渲染:
 | 
						||
- 没有使用光源的附加特性(TextureProfile、LightFunction、LightingChannel)。
 | 
						||
- 没有开启阴影。
 | 
						||
- 非平行光或矩形光。
 | 
						||
 | 
						||
另外,是否支持分块渲染,还需要光源场景代理的`IsTiledDeferredLightingSupported`返回true,长度为0的点光源才支持分块渲染。
 | 
						||
 | 
						||
## GatherLightsAndComputeLightGrid
 | 
						||
```c++
 | 
						||
FComputeLightGridOutput FDeferredShadingSceneRenderer::GatherLightsAndComputeLightGrid(FRDGBuilder& GraphBuilder, bool bNeedLightGrid, FSortedLightSetSceneInfo& SortedLightSet)
 | 
						||
{
 | 
						||
	SCOPED_NAMED_EVENT(GatherLightsAndComputeLightGrid, FColor::Emerald);
 | 
						||
	FComputeLightGridOutput Result = {};
 | 
						||
 | 
						||
	bool bShadowedLightsInClustered = ShouldUseClusteredDeferredShading()
 | 
						||
		&& CVarVirtualShadowOnePassProjection.GetValueOnRenderThread()
 | 
						||
		&& VirtualShadowMapArray.IsEnabled();
 | 
						||
 | 
						||
	const bool bUseLumenDirectLighting = ShouldRenderLumenDirectLighting(Scene, Views[0]);
 | 
						||
 | 
						||
	GatherAndSortLights(SortedLightSet, bShadowedLightsInClustered, bUseLumenDirectLighting);
 | 
						||
	
 | 
						||
	if (!bNeedLightGrid)
 | 
						||
	{
 | 
						||
		SetDummyForwardLightUniformBufferOnViews(GraphBuilder, ShaderPlatform, Views);
 | 
						||
		return Result;
 | 
						||
	}
 | 
						||
 | 
						||
	bool bAnyViewUsesForwardLighting = false;
 | 
						||
	bool bAnyViewUsesLumen = false;
 | 
						||
	for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
 | 
						||
	{
 | 
						||
		const FViewInfo& View = Views[ViewIndex];
 | 
						||
		bAnyViewUsesForwardLighting |= View.bTranslucentSurfaceLighting || ShouldRenderVolumetricFog() || View.bHasSingleLayerWaterMaterial || VolumetricCloudWantsToSampleLocalLights(Scene, ViewFamily.EngineShowFlags) || ShouldVisualizeLightGrid();
 | 
						||
		bAnyViewUsesLumen |= GetViewPipelineState(View).DiffuseIndirectMethod == EDiffuseIndirectMethod::Lumen || GetViewPipelineState(View).ReflectionsMethod == EReflectionsMethod::Lumen;
 | 
						||
	}
 | 
						||
	
 | 
						||
	const bool bCullLightsToGrid = GLightCullingQuality 
 | 
						||
		&& (IsForwardShadingEnabled(ShaderPlatform) || bAnyViewUsesForwardLighting || IsRayTracingEnabled() || ShouldUseClusteredDeferredShading() ||
 | 
						||
			bAnyViewUsesLumen || ViewFamily.EngineShowFlags.VisualizeMeshDistanceFields || VirtualShadowMapArray.IsEnabled());
 | 
						||
 | 
						||
	// Store this flag if lights are injected in the grids, check with 'AreLightsInLightGrid()'
 | 
						||
	bAreLightsInLightGrid = bCullLightsToGrid;
 | 
						||
	
 | 
						||
	Result = ComputeLightGrid(GraphBuilder, bCullLightsToGrid, SortedLightSet);
 | 
						||
 | 
						||
	return Result;
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
- GatherAndSortLights:收集与排序当前场景中所有的可见光源(当前View)。
 | 
						||
- ComputeLightGrid:是在锥体空间(frustum space)裁剪局部光源和反射探针到3D格子中,构建每个视图相关的光源列表和格子。
 | 
						||
 | 
						||
# RenderLights() -> RenderLight()
 | 
						||
 | 
						||
## InternalRenderLight()
 | 
						||
 | 
						||
## DeferredLightVertexShaders 
 | 
						||
```c++
 | 
						||
// 输入参数.
 | 
						||
struct FInputParams
 | 
						||
{
 | 
						||
    float2 PixelPos;
 | 
						||
    float4 ScreenPosition;
 | 
						||
    float2 ScreenUV;
 | 
						||
    float3 ScreenVector;
 | 
						||
};
 | 
						||
 | 
						||
// 派生参数.
 | 
						||
struct FDerivedParams
 | 
						||
{
 | 
						||
    float3 CameraVector;
 | 
						||
    float3 WorldPosition;
 | 
						||
};
 | 
						||
 | 
						||
// 获取派生参数.
 | 
						||
FDerivedParams GetDerivedParams(in FInputParams Input, in float SceneDepth)
 | 
						||
{
 | 
						||
    FDerivedParams Out;
 | 
						||
#if LIGHT_SOURCE_SHAPE > 0
 | 
						||
    // With a perspective projection, the clip space position is NDC * Clip.w
 | 
						||
    // With an orthographic projection, clip space is the same as NDC
 | 
						||
    float2 ClipPosition = Input.ScreenPosition.xy / Input.ScreenPosition.w * (View.ViewToClip[3][3] < 1.0f ? SceneDepth : 1.0f);
 | 
						||
    Out.WorldPosition = mul(float4(ClipPosition, SceneDepth, 1), View.ScreenToWorld).xyz;
 | 
						||
    Out.CameraVector = normalize(Out.WorldPosition - View.WorldCameraOrigin);
 | 
						||
#else
 | 
						||
    Out.WorldPosition = Input.ScreenVector * SceneDepth + View.WorldCameraOrigin;
 | 
						||
    Out.CameraVector = normalize(Input.ScreenVector);
 | 
						||
#endif
 | 
						||
    return Out;
 | 
						||
}
 | 
						||
 | 
						||
Texture2D<uint> LightingChannelsTexture;
 | 
						||
 | 
						||
uint GetLightingChannelMask(float2 UV)
 | 
						||
{
 | 
						||
	uint2 IntegerUV = UV * View.BufferSizeAndInvSize.xy;
 | 
						||
	return LightingChannelsTexture.Load(uint3(IntegerUV, 0)).x;
 | 
						||
}
 | 
						||
 | 
						||
float GetExposure()
 | 
						||
{
 | 
						||
	return View.PreExposure;
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
向往文章中的SetupLightDataForStandardDeferred()变为InitDeferredLightFromUniforms()。位于LightDataUniform.ush。
 | 
						||
```c++
 | 
						||
FDeferredLightData InitDeferredLightFromUniforms(uint InLightType)
 | 
						||
{
 | 
						||
	const bool bIsRadial = InLightType != LIGHT_TYPE_DIRECTIONAL;
 | 
						||
 | 
						||
	FDeferredLightData Out;
 | 
						||
	Out.TranslatedWorldPosition = GetDeferredLightTranslatedWorldPosition();
 | 
						||
	Out.InvRadius				= DeferredLightUniforms.InvRadius;
 | 
						||
	Out.Color					= DeferredLightUniforms.Color;
 | 
						||
	Out.FalloffExponent			= DeferredLightUniforms.FalloffExponent;
 | 
						||
	Out.Direction				= DeferredLightUniforms.Direction;
 | 
						||
	Out.Tangent					= DeferredLightUniforms.Tangent;
 | 
						||
	Out.SpotAngles				= DeferredLightUniforms.SpotAngles;
 | 
						||
	Out.SourceRadius			= DeferredLightUniforms.SourceRadius;
 | 
						||
	Out.SourceLength			= bIsRadial ? DeferredLightUniforms.SourceLength : 0;
 | 
						||
	Out.SoftSourceRadius		= DeferredLightUniforms.SoftSourceRadius;
 | 
						||
	Out.SpecularScale			= DeferredLightUniforms.SpecularScale;
 | 
						||
	Out.ContactShadowLength		= abs(DeferredLightUniforms.ContactShadowLength);
 | 
						||
	Out.ContactShadowLengthInWS = DeferredLightUniforms.ContactShadowLength < 0.0f;
 | 
						||
	Out.ContactShadowCastingIntensity = DeferredLightUniforms.ContactShadowCastingIntensity;
 | 
						||
	Out.ContactShadowNonCastingIntensity = DeferredLightUniforms.ContactShadowNonCastingIntensity;
 | 
						||
	Out.DistanceFadeMAD			= DeferredLightUniforms.DistanceFadeMAD;
 | 
						||
	Out.ShadowMapChannelMask	= DeferredLightUniforms.ShadowMapChannelMask;
 | 
						||
	Out.ShadowedBits			= DeferredLightUniforms.ShadowedBits;
 | 
						||
	Out.bInverseSquared			= bIsRadial && DeferredLightUniforms.FalloffExponent == 0; // Directional lights don't use 'inverse squared attenuation'
 | 
						||
	Out.bRadialLight			= bIsRadial;
 | 
						||
	Out.bSpotLight				= InLightType == LIGHT_TYPE_SPOT;
 | 
						||
	Out.bRectLight				= InLightType == LIGHT_TYPE_RECT;
 | 
						||
 | 
						||
	Out.RectLightData.BarnCosAngle				= DeferredLightUniforms.RectLightBarnCosAngle;
 | 
						||
	Out.RectLightData.BarnLength				= DeferredLightUniforms.RectLightBarnLength;
 | 
						||
	Out.RectLightData.AtlasData.AtlasMaxLevel	= DeferredLightUniforms.RectLightAtlasMaxLevel;
 | 
						||
	Out.RectLightData.AtlasData.AtlasUVOffset	= DeferredLightUniforms.RectLightAtlasUVOffset;
 | 
						||
	Out.RectLightData.AtlasData.AtlasUVScale	= DeferredLightUniforms.RectLightAtlasUVScale;
 | 
						||
 | 
						||
	Out.HairTransmittance		= InitHairTransmittanceData();
 | 
						||
	return Out;
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
### DeferredLightPixelMain
 | 
						||
```c++
 | 
						||
void DeferredLightPixelMain(
 | 
						||
#if LIGHT_SOURCE_SHAPE > 0
 | 
						||
	float4 InScreenPosition : TEXCOORD0,
 | 
						||
#else
 | 
						||
	float2 ScreenUV			: TEXCOORD0,
 | 
						||
	float3 ScreenVector		: TEXCOORD1,
 | 
						||
#endif
 | 
						||
	float4 SVPos			: SV_POSITION,
 | 
						||
	out float4 OutColor		: SV_Target0
 | 
						||
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED
 | 
						||
	, out float3 OutOpaqueRoughRefractionSceneColor : SV_Target1
 | 
						||
	, out float3 OutSubSurfaceSceneColor : SV_Target2
 | 
						||
#endif
 | 
						||
	)
 | 
						||
{
 | 
						||
	const float2 PixelPos = SVPos.xy;
 | 
						||
	OutColor = 0;
 | 
						||
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED
 | 
						||
	OutOpaqueRoughRefractionSceneColor = 0;
 | 
						||
	OutSubSurfaceSceneColor = 0;
 | 
						||
#endif
 | 
						||
 | 
						||
	// Convert input data (directional/local light)
 | 
						||
	// 计算屏幕UV
 | 
						||
	FInputParams InputParams = (FInputParams)0;
 | 
						||
	InputParams.PixelPos		= SVPos.xy;
 | 
						||
#if LIGHT_SOURCE_SHAPE > 0
 | 
						||
	InputParams.ScreenPosition	= InScreenPosition;
 | 
						||
	InputParams.ScreenUV		= InScreenPosition.xy / InScreenPosition.w * View.ScreenPositionScaleBias.xy + View.ScreenPositionScaleBias.wz;
 | 
						||
	InputParams.ScreenVector	= 0;
 | 
						||
#else
 | 
						||
	InputParams.ScreenPosition	= 0;
 | 
						||
	InputParams.ScreenUV		= ScreenUV;
 | 
						||
	InputParams.ScreenVector	= ScreenVector;
 | 
						||
#endif
 | 
						||
 | 
						||
#if STRATA_ENABLED
 | 
						||
 | 
						||
	FStrataAddressing StrataAddressing = GetStrataPixelDataByteOffset(PixelPos, uint2(View.BufferSizeAndInvSize.xy), Strata.MaxBytesPerPixel);
 | 
						||
	FStrataPixelHeader StrataPixelHeader = UnpackStrataHeaderIn(Strata.MaterialTextureArray, StrataAddressing, Strata.TopLayerTexture);
 | 
						||
 | 
						||
	BRANCH
 | 
						||
	if (StrataPixelHeader.BSDFCount > 0	// This test is also enough to exclude sky pixels
 | 
						||
#if USE_LIGHTING_CHANNELS
 | 
						||
		//灯光通道逻辑
 | 
						||
		&& (GetLightingChannelMask(InputParams.ScreenUV) & DeferredLightUniforms.LightingChannelMask)
 | 
						||
#endif
 | 
						||
		) 
 | 
						||
	{
 | 
						||
		//通过SceneDepth获取的CameraVector以及当前像素的世界坐标
 | 
						||
		const float SceneDepth = CalcSceneDepth(InputParams.ScreenUV);
 | 
						||
		const FDerivedParams DerivedParams = GetDerivedParams(InputParams, SceneDepth);
 | 
						||
 | 
						||
		//设置获取光源各种信息
 | 
						||
		FDeferredLightData LightData = InitDeferredLightFromUniforms(CURRENT_LIGHT_TYPE);
 | 
						||
		UpdateLightDataColor(LightData, InputParams, DerivedParams);//根据当前世界坐标计算LightData.Color *= 大气&云&阴影的衰减值 * IES灯亮度(非IES灯数值为1) 
 | 
						||
 | 
						||
		float3 V =-DerivedParams.CameraVector;
 | 
						||
		float3 L = LightData.Direction;	// Already normalized
 | 
						||
		float3 ToLight = L;
 | 
						||
		float LightMask = 1;
 | 
						||
		if (LightData.bRadialLight)
 | 
						||
		{
 | 
						||
			LightMask = GetLocalLightAttenuation(DerivedParams.TranslatedWorldPosition, LightData, ToLight, L);
 | 
						||
		}
 | 
						||
 | 
						||
		if (LightMask > 0)
 | 
						||
		{
 | 
						||
			FShadowTerms ShadowTerms = { StrataGetAO(StrataPixelHeader), 1.0, 1.0, InitHairTransmittanceData() };
 | 
						||
			float4 LightAttenuation = GetLightAttenuationFromShadow(InputParams, SceneDepth);
 | 
						||
 | 
						||
			float Dither = InterleavedGradientNoise(InputParams.PixelPos, View.StateFrameIndexMod8);
 | 
						||
			const uint FakeShadingModelID = 0;
 | 
						||
			const float FakeContactShadowOpacity = 1.0f;
 | 
						||
			float4 PrecomputedShadowFactors = StrataReadPrecomputedShadowFactors(StrataPixelHeader, PixelPos, SceneTexturesStruct.GBufferETexture);
 | 
						||
			GetShadowTerms(SceneDepth, PrecomputedShadowFactors, FakeShadingModelID, FakeContactShadowOpacity,
 | 
						||
				LightData, DerivedParams.TranslatedWorldPosition, L, LightAttenuation, Dither, ShadowTerms);
 | 
						||
 | 
						||
			FStrataDeferredLighting StrataLighting = StrataDeferredLighting(
 | 
						||
				LightData,
 | 
						||
				V,
 | 
						||
				L,
 | 
						||
				ToLight,
 | 
						||
				LightMask,
 | 
						||
				ShadowTerms,
 | 
						||
				Strata.MaterialTextureArray,
 | 
						||
				StrataAddressing,
 | 
						||
				StrataPixelHeader);
 | 
						||
 | 
						||
			OutColor += StrataLighting.SceneColor;
 | 
						||
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED
 | 
						||
			OutOpaqueRoughRefractionSceneColor += StrataLighting.OpaqueRoughRefractionSceneColor;
 | 
						||
			OutSubSurfaceSceneColor += StrataLighting.SubSurfaceSceneColor;
 | 
						||
#endif
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
#else // STRATA_ENABLED
 | 
						||
	//取得屏幕空间数据(FGbufferData、AO)
 | 
						||
	FScreenSpaceData ScreenSpaceData = GetScreenSpaceData(InputParams.ScreenUV);
 | 
						||
	// Only light pixels marked as using deferred shading
 | 
						||
	BRANCH if (ScreenSpaceData.GBuffer.ShadingModelID > 0
 | 
						||
#if USE_LIGHTING_CHANNELS
 | 
						||
		&& (GetLightingChannelMask(InputParams.ScreenUV) & DeferredLightUniforms.LightingChannelMask)
 | 
						||
#endif
 | 
						||
		)
 | 
						||
	{
 | 
						||
		//通过SceneDepth获取的CameraVector以及当前像素的世界坐标
 | 
						||
		const float SceneDepth = CalcSceneDepth(InputParams.ScreenUV);
 | 
						||
		const FDerivedParams DerivedParams = GetDerivedParams(InputParams, SceneDepth);
 | 
						||
 | 
						||
		//设置获取光源各种信息
 | 
						||
		FDeferredLightData LightData = InitDeferredLightFromUniforms(CURRENT_LIGHT_TYPE);
 | 
						||
		UpdateLightDataColor(LightData, InputParams, DerivedParams);//根据当前世界坐标计算LightData.Color *= 大气&云&阴影的衰减值 * IES灯亮度(非IES灯数值为1) 
 | 
						||
 | 
						||
 | 
						||
	 #if USE_HAIR_COMPLEX_TRANSMITTANCE
 | 
						||
		//针对ShadingModel Hair(同时需要CustomData.a > 0)计算头发散射结果
 | 
						||
		if (ScreenSpaceData.GBuffer.ShadingModelID == SHADINGMODELID_HAIR && ShouldUseHairComplexTransmittance(ScreenSpaceData.GBuffer))
 | 
						||
		{
 | 
						||
			LightData.HairTransmittance = EvaluateDualScattering(ScreenSpaceData.GBuffer, DerivedParams.CameraVector, -DeferredLightUniforms.Direction);
 | 
						||
		}
 | 
						||
	#endif
 | 
						||
		//计算当前像素的抖动值
 | 
						||
		float Dither = InterleavedGradientNoise(InputParams.PixelPos, View.StateFrameIndexMod8);
 | 
						||
 | 
						||
		float SurfaceShadow = 1.0f;
 | 
						||
		
 | 
						||
		float4 LightAttenuation = GetLightAttenuationFromShadow(InputParams, SceneDepth);//根绝是否开启VSM 分别从VirtualShadowMap 或者 LightAttenuationTexture(上一阶段渲染的ShadowProjction) 获取灯光衰减值。
 | 
						||
		float4 Radiance = GetDynamicLighting(DerivedParams.TranslatedWorldPosition, DerivedParams.CameraVector, ScreenSpaceData.GBuffer, ScreenSpaceData.AmbientOcclusion, ScreenSpaceData.GBuffer.ShadingModelID, LightData, LightAttenuation, Dither, uint2(InputParams.PixelPos), SurfaceShadow);
 | 
						||
 | 
						||
		OutColor += Radiance;
 | 
						||
	}
 | 
						||
 | 
						||
#endif // STRATA_ENABLED
 | 
						||
 | 
						||
	// RGB:SceneColor Specular and Diffuse
 | 
						||
	// A:Non Specular SceneColor Luminance
 | 
						||
	// So we need PreExposure for both color and alpha
 | 
						||
	OutColor.rgba *= GetExposure();
 | 
						||
#if STRATA_OPAQUE_ROUGH_REFRACTION_ENABLED 
 | 
						||
	// Idem
 | 
						||
	OutOpaqueRoughRefractionSceneColor *= GetExposure();
 | 
						||
	OutSubSurfaceSceneColor *= GetExposure();
 | 
						||
#endif
 | 
						||
}
 | 
						||
#endif
 | 
						||
```
 | 
						||
 | 
						||
#### GetLightAttenuationFromShadow() => GetPerPixelLightAttenuation()
 | 
						||
原文:https://zhuanlan.zhihu.com/p/23216110797
 | 
						||
有提到阴影模糊问题。
 | 
						||
 FDeferredLightPS::FParameters GetDeferredLightPSParameters()可以看到该Sampler的模式是Point模式。
 | 
						||
```c++
 | 
						||
float4 GetPerPixelLightAttenuation(float2 UV)
 | 
						||
{
 | 
						||
	return DecodeLightAttenuation(Texture2DSampleLevel(LightAttenuationTexture, LightAttenuationTextureSampler, UV, 0));
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
之后可以仿照GetPerPixelLightAttenuation写一个针对ToonShadow的函数:
 | 
						||
```c++
 | 
						||
//对卡通阴影进行降采样抗锯齿  
 | 
						||
float4 GetPerPixelLightAttenuationToonAA(float2 UV)  
 | 
						||
{  
 | 
						||
    int texture_x, texture_y;  
 | 
						||
    LightAttenuationTexture.GetDimensions(texture_x, texture_y);  
 | 
						||
 | 
						||
    float2 texelSize = float2(1.0 / texture_x, 1.0 / texture_y);  
 | 
						||
 | 
						||
    float2 sampleOffsets[4] = {  
 | 
						||
       float2(-1.5,  0.5),  
 | 
						||
       float2( 0.5,  0.5),  
 | 
						||
       float2(-1.5, -1.5),  
 | 
						||
       float2( 0.5, -1.5)  
 | 
						||
    };  
 | 
						||
 | 
						||
    float4 shadowSum = float4(0,0,0,0);  
 | 
						||
    for (int i = 0; i < 4; i++)  
 | 
						||
    {  
 | 
						||
       float2 sampleUV = UV + sampleOffsets[i] * texelSize;  
 | 
						||
       shadowSum += DecodeLightAttenuation(Texture2DSampleLevel(LightAttenuationTexture, LightAttenuationTextureSampler_Toon, sampleUV, 0));  
 | 
						||
    }  
 | 
						||
    return shadowSum * 0.25;  
 | 
						||
}
 | 
						||
 | 
						||
//获取卡通灯光衰减  
 | 
						||
float4 GetLightAttenuationFromShadowToonAA(in FInputParams InputParams, float SceneDepth, float3 TranslatedWorldPosition)  
 | 
						||
{  
 | 
						||
    float4 LightAttenuation = float4(1, 1, 1, 1);  
 | 
						||
 | 
						||
#if USE_VIRTUAL_SHADOW_MAP_MASK  
 | 
						||
    if (VirtualShadowMapId != INDEX_NONE)  
 | 
						||
    {       
 | 
						||
	    float ShadowMask = GetVirtualShadowMapMaskForLight(ShadowMaskBits[InputParams.PixelPos], uint2(InputParams.PixelPos), SceneDepth, VirtualShadowMapId, TranslatedWorldPosition);       
 | 
						||
	    return ShadowMask.xxxx;  
 | 
						||
    }else  
 | 
						||
#endif  
 | 
						||
    {  
 | 
						||
	    return GetPerPixelLightAttenuationToonAA(InputParams.ScreenUV);  
 | 
						||
    }  
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
### GetDynamicLighting() => GetDynamicLightingSplit()
 | 
						||
```c++
 | 
						||
FDeferredLightingSplit GetDynamicLightingSplit(
 | 
						||
	float3 TranslatedWorldPosition, float3 CameraVector, FGBufferData GBuffer, float AmbientOcclusion, uint ShadingModelID, 
 | 
						||
	FDeferredLightData LightData, float4 LightAttenuation, float Dither, uint2 SVPos, 
 | 
						||
	inout float SurfaceShadow)
 | 
						||
{
 | 
						||
	FLightAccumulator LightAccumulator = AccumulateDynamicLighting(TranslatedWorldPosition, CameraVector, GBuffer, AmbientOcclusion, ShadingModelID, LightData, LightAttenuation, Dither, SVPos, SurfaceShadow);
 | 
						||
	return LightAccumulator_GetResultSplit(LightAccumulator);
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
LightAccumulator_GetResultSplit():针对Subsurface,`RetDiffuse.a =  In.ScatterableLightLuma;` 或者 `RetDiffuse.a = Luminance(In.ScatterableLight);`
 | 
						||
```c++
 | 
						||
FDeferredLightingSplit LightAccumulator_GetResultSplit(FLightAccumulator In)
 | 
						||
{
 | 
						||
	float4 RetDiffuse;
 | 
						||
	float4 RetSpecular;
 | 
						||
 | 
						||
	if (VISUALIZE_LIGHT_CULLING == 1)
 | 
						||
	{
 | 
						||
		// a soft gradient from dark red to bright white, can be changed to be different
 | 
						||
		RetDiffuse = 0.1f * float4(1.0f, 0.25f, 0.075f, 0) * In.EstimatedCost;
 | 
						||
		RetSpecular = 0.1f * float4(1.0f, 0.25f, 0.075f, 0) * In.EstimatedCost;
 | 
						||
	}
 | 
						||
	else
 | 
						||
	{
 | 
						||
		RetDiffuse = float4(In.TotalLightDiffuse, 0);
 | 
						||
		RetSpecular = float4(In.TotalLightSpecular, 0);
 | 
						||
 | 
						||
		//针对Subsurface会额外对RetDiffuse的Alpha设置数值 ScatterableLight的亮度数值
 | 
						||
		if (SUBSURFACE_CHANNEL_MODE == 1 )
 | 
						||
		{
 | 
						||
			if (View.bCheckerboardSubsurfaceProfileRendering == 0)
 | 
						||
			{
 | 
						||
				// RGB accumulated RGB HDR color, A: specular luminance for screenspace subsurface scattering
 | 
						||
				RetDiffuse.a = In.ScatterableLightLuma;
 | 
						||
			}
 | 
						||
		}
 | 
						||
		else if (SUBSURFACE_CHANNEL_MODE == 2)
 | 
						||
		{
 | 
						||
			// RGB accumulated RGB HDR color, A: view independent (diffuse) luminance for screenspace subsurface scattering
 | 
						||
			// 3 add,  1 mul, 2 mad, can be optimized to use 2 less temporary during accumulation and remove the 3 add
 | 
						||
			RetDiffuse.a = Luminance(In.ScatterableLight);
 | 
						||
			// todo, need second MRT for SUBSURFACE_CHANNEL_MODE==2
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	FDeferredLightingSplit Ret;
 | 
						||
	Ret.DiffuseLighting = RetDiffuse;
 | 
						||
	Ret.SpecularLighting = RetSpecular;
 | 
						||
 | 
						||
	return Ret;
 | 
						||
}
 | 
						||
```
 | 
						||
#### AccumulateDynamicLighting
 | 
						||
```c++
 | 
						||
FLightAccumulator AccumulateDynamicLighting(
 | 
						||
	float3 TranslatedWorldPosition, half3 CameraVector, FGBufferData GBuffer, half AmbientOcclusion, uint ShadingModelID,
 | 
						||
	FDeferredLightData LightData, half4 LightAttenuation, float Dither, uint2 SVPos, 
 | 
						||
	inout float SurfaceShadow)
 | 
						||
{
 | 
						||
	FLightAccumulator LightAccumulator = (FLightAccumulator)0;
 | 
						||
 | 
						||
	half3 V = -CameraVector;
 | 
						||
	half3 N = GBuffer.WorldNormal;
 | 
						||
	//针对开启CLEAR_COAT_BOTTOM_NORMAL的清漆ShadingModel进行Normal处理
 | 
						||
	BRANCH if( GBuffer.ShadingModelID == SHADINGMODELID_CLEAR_COAT && CLEAR_COAT_BOTTOM_NORMAL)
 | 
						||
	{
 | 
						||
		const float2 oct1 = ((float2(GBuffer.CustomData.a, GBuffer.CustomData.z) * 4) - (512.0/255.0)) + UnitVectorToOctahedron(GBuffer.WorldNormal);
 | 
						||
		N = OctahedronToUnitVector(oct1);			
 | 
						||
	}
 | 
						||
	
 | 
						||
	float3 L = LightData.Direction;	// Already normalized
 | 
						||
	float3 ToLight = L;
 | 
						||
	float3 MaskedLightColor = LightData.Color;//灯光颜色
 | 
						||
	float LightMask = 1;
 | 
						||
	// 获取辐射光源的衰减值,衰减方法根据LightData.bInverseSquared,会分别使用新版衰减方法InverseSquared 或者 旧方法。如果是SpotLight与RectLight就乘以SpotLight、RectLight对应的形状衰减数值。
 | 
						||
	if (LightData.bRadialLight)
 | 
						||
	{
 | 
						||
		LightMask = GetLocalLightAttenuation( TranslatedWorldPosition, LightData, ToLight, L );
 | 
						||
		MaskedLightColor *= LightMask;
 | 
						||
	}
 | 
						||
 | 
						||
	LightAccumulator.EstimatedCost += 0.3f;		// running the PixelShader at all has a cost
 | 
						||
 | 
						||
	BRANCH
 | 
						||
	if( LightMask > 0 )//如果不是完全死黑就计算阴影部分逻辑
 | 
						||
	{
 | 
						||
		FShadowTerms Shadow;
 | 
						||
		Shadow.SurfaceShadow = AmbientOcclusion;//GBuffer中的AO
 | 
						||
		Shadow.TransmissionShadow = 1;
 | 
						||
		Shadow.TransmissionThickness = 1;
 | 
						||
		Shadow.HairTransmittance.OpaqueVisibility = 1;
 | 
						||
		const float ContactShadowOpacity = GBuffer.CustomData.a;//TODO:修正ToonStandard对应的逻辑
 | 
						||
		//
 | 
						||
		GetShadowTerms(GBuffer.Depth, GBuffer.PrecomputedShadowFactors, GBuffer.ShadingModelID, ContactShadowOpacity,
 | 
						||
			LightData, TranslatedWorldPosition, L, LightAttenuation, Dither, Shadow);
 | 
						||
		SurfaceShadow = Shadow.SurfaceShadow;
 | 
						||
 | 
						||
		LightAccumulator.EstimatedCost += 0.3f;		// add the cost of getting the shadow terms
 | 
						||
 | 
						||
#if SHADING_PATH_MOBILE
 | 
						||
		const bool bNeedsSeparateSubsurfaceLightAccumulation = UseSubsurfaceProfile(GBuffer.ShadingModelID);
 | 
						||
		
 | 
						||
		FDirectLighting Lighting = (FDirectLighting)0;
 | 
						||
 | 
						||
		half NoL = max(0, dot(GBuffer.WorldNormal, L));
 | 
						||
	#if TRANSLUCENCY_NON_DIRECTIONAL
 | 
						||
		NoL = 1.0f;
 | 
						||
	#endif
 | 
						||
		Lighting = EvaluateBxDF(GBuffer, N, V, L, NoL, Shadow);
 | 
						||
 | 
						||
		Lighting.Specular *= LightData.SpecularScale;
 | 
						||
				
 | 
						||
		LightAccumulator_AddSplit( LightAccumulator, Lighting.Diffuse, Lighting.Specular, Lighting.Diffuse, MaskedLightColor * Shadow.SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation );
 | 
						||
		LightAccumulator_AddSplit( LightAccumulator, Lighting.Transmission, 0.0f, Lighting.Transmission, MaskedLightColor * Shadow.TransmissionShadow, bNeedsSeparateSubsurfaceLightAccumulation );
 | 
						||
#else // SHADING_PATH_MOBILE
 | 
						||
		BRANCH
 | 
						||
		if( Shadow.SurfaceShadow + Shadow.TransmissionShadow > 0 )
 | 
						||
		{
 | 
						||
			const bool bNeedsSeparateSubsurfaceLightAccumulation = UseSubsurfaceProfile(GBuffer.ShadingModelID);//判断是否需要SubsurfaceProfile计算
 | 
						||
		#if NON_DIRECTIONAL_DIRECT_LIGHTING // 非平行直接光
 | 
						||
			float Lighting;
 | 
						||
			if( LightData.bRectLight )//面光源
 | 
						||
			{
 | 
						||
				FRect Rect = GetRect( ToLight, LightData );
 | 
						||
				Lighting = IntegrateLight( Rect );
 | 
						||
			}
 | 
						||
			else //点光源以及胶囊光源
 | 
						||
			{
 | 
						||
				FCapsuleLight Capsule = GetCapsule( ToLight, LightData );
 | 
						||
				Lighting = IntegrateLight( Capsule, LightData.bInverseSquared );
 | 
						||
			}
 | 
						||
 | 
						||
			float3 LightingDiffuse = Diffuse_Lambert( GBuffer.DiffuseColor ) * Lighting;//Lambert照明 * 积分结果
 | 
						||
			LightAccumulator_AddSplit(LightAccumulator, LightingDiffuse, 0.0f, 0, MaskedLightColor * Shadow.SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation);
 | 
						||
		#else
 | 
						||
			FDirectLighting Lighting;
 | 
						||
			if (LightData.bRectLight)//面光源
 | 
						||
			{
 | 
						||
				FRect Rect = GetRect( ToLight, LightData );
 | 
						||
				const FRectTexture SourceTexture = ConvertToRectTexture(LightData);
 | 
						||
 | 
						||
				#if REFERENCE_QUALITY
 | 
						||
					Lighting = IntegrateBxDF( GBuffer, N, V, Rect, Shadow, SourceTexture, SVPos );
 | 
						||
				#else
 | 
						||
					Lighting = IntegrateBxDF( GBuffer, N, V, Rect, Shadow, SourceTexture);
 | 
						||
				#endif
 | 
						||
			}
 | 
						||
			else //点光源以及胶囊光源
 | 
						||
			{
 | 
						||
				FCapsuleLight Capsule = GetCapsule( ToLight, LightData );
 | 
						||
 | 
						||
				#if REFERENCE_QUALITY
 | 
						||
					Lighting = IntegrateBxDF( GBuffer, N, V, Capsule, Shadow, SVPos );
 | 
						||
				#else
 | 
						||
					Lighting = IntegrateBxDF( GBuffer, N, V, Capsule, Shadow, LightData.bInverseSquared );
 | 
						||
				#endif
 | 
						||
			}
 | 
						||
 | 
						||
			Lighting.Specular *= LightData.SpecularScale;
 | 
						||
 | 
						||
			//累加Diffuse + Specular光照结果(Diffuse项还会作为散射进行计算,根绝散射模式不同赋予 FLightAccumulator.ScatterableLightLuma 或者 FLightAccumulator.ScatterableLight)
 | 
						||
			LightAccumulator_AddSplit( LightAccumulator, Lighting.Diffuse, Lighting.Specular, Lighting.Diffuse, MaskedLightColor * Shadow.SurfaceShadow, bNeedsSeparateSubsurfaceLightAccumulation );
 | 
						||
			//散射项计算
 | 
						||
			LightAccumulator_AddSplit( LightAccumulator, Lighting.Transmission, 0.0f, Lighting.Transmission, MaskedLightColor * Shadow.TransmissionShadow, bNeedsSeparateSubsurfaceLightAccumulation );
 | 
						||
 | 
						||
			LightAccumulator.EstimatedCost += 0.4f;		// add the cost of the lighting computations (should sum up to 1 form one light)
 | 
						||
		#endif
 | 
						||
		}
 | 
						||
#endif // SHADING_PATH_MOBILE
 | 
						||
	}
 | 
						||
	return LightAccumulator;
 | 
						||
}
 | 
						||
```
 | 
						||
 | 
						||
光源新衰减公式,相关计算位于`GetLocalLightAttenuation()`:
 | 
						||
$$Falloff = \frac{saturate(1-(distance/lightRadius)^4)^2}{distance^2 + 1}$$
 | 
						||
 | 
						||
光源旧衰减公式,相关函数位于DynamicLightingCommon.ush中的`RadialAttenuation()`
 | 
						||
$$Falloff = (1 - saturate(length(WorldLightVector)))^ {FalloffExponent}$$
 | 
						||
##### GetShadowTerms()
 | 
						||
```c++
 | 
						||
void GetShadowTerms(float SceneDepth, half4 PrecomputedShadowFactors, uint ShadingModelID, float ContactShadowOpacity, FDeferredLightData LightData, float3 TranslatedWorldPosition, half3 L, half4 LightAttenuation, float Dither, inout FShadowTerms Shadow)
 | 
						||
{
 | 
						||
	float ContactShadowLength = 0.0f;
 | 
						||
	const float ContactShadowLengthScreenScale = GetTanHalfFieldOfView().y * SceneDepth;
 | 
						||
 | 
						||
	BRANCH
 | 
						||
	if (LightData.ShadowedBits)
 | 
						||
	{
 | 
						||
		// 重新映射ShadowProjection结果
 | 
						||
		// Remapping the light attenuation buffer (see ShadowRendering.cpp)
 | 
						||
 | 
						||
		// LightAttenuation: Light function + per-object shadows in z, per-object SSS shadowing in w, 
 | 
						||
		// Whole scene directional light shadows in x, whole scene directional light SSS shadows in y
 | 
						||
		// Get static shadowing from the appropriate GBuffer channel
 | 
						||
#if ALLOW_STATIC_LIGHTING
 | 
						||
		half UsesStaticShadowMap = dot(LightData.ShadowMapChannelMask, half4(1, 1, 1, 1));
 | 
						||
		half StaticShadowing = lerp(1, dot(PrecomputedShadowFactors, LightData.ShadowMapChannelMask), UsesStaticShadowMap);
 | 
						||
#else
 | 
						||
		half StaticShadowing = 1.0f;
 | 
						||
#endif
 | 
						||
 | 
						||
		if (LightData.bRadialLight || SHADING_PATH_MOBILE)//RadialLight或者是移动端使用以下逻辑。bRadialLight一般是 PointLight or SpotLight。径向衰减(radial attenuation):指光照强度随距离光源的远近而衰减的特性(通常遵循平方反比定律)。
 | 
						||
		{
 | 
						||
			// Remapping the light attenuation buffer (see ShadowRendering.cpp)
 | 
						||
 | 
						||
			Shadow.SurfaceShadow = LightAttenuation.z * StaticShadowing;//RadialLight灯光的阴影项计算不受AO影响,赋值Light function + per-object的ShadowProjection
 | 
						||
			// SSS uses a separate shadowing term that allows light to penetrate the surface
 | 
						||
			//@todo - how to do static shadowing of SSS correctly?
 | 
						||
			Shadow.TransmissionShadow = LightAttenuation.w * StaticShadowing;//per-object SSS shadowing 
 | 
						||
 | 
						||
			Shadow.TransmissionThickness = LightAttenuation.w;//per-object SSS shadowing 
 | 
						||
		}
 | 
						||
		else
 | 
						||
		{
 | 
						||
			// Remapping the light attenuation buffer (see ShadowRendering.cpp)
 | 
						||
			// Also fix up the fade between dynamic and static shadows
 | 
						||
			// to work with plane splits rather than spheres.
 | 
						||
 | 
						||
			float DynamicShadowFraction = DistanceFromCameraFade(SceneDepth, LightData);
 | 
						||
			// For a directional light, fade between static shadowing and the whole scene dynamic shadowing based on distance + per object shadows
 | 
						||
			Shadow.SurfaceShadow = lerp(LightAttenuation.x, StaticShadowing, DynamicShadowFraction);//根据计算出动态阴影的衰减值来插值ShadowProject与静态阴影。x:方向光阴影
 | 
						||
			// Fade between SSS dynamic shadowing and static shadowing based on distance
 | 
						||
			Shadow.TransmissionShadow = min(lerp(LightAttenuation.y, StaticShadowing, DynamicShadowFraction), LightAttenuation.w);// w:per-object SSS shadowing
 | 
						||
 | 
						||
			Shadow.SurfaceShadow *= LightAttenuation.z;//Light function + per-object shadows in z
 | 
						||
			Shadow.TransmissionShadow *= LightAttenuation.z;
 | 
						||
 | 
						||
			// Need this min or backscattering will leak when in shadow which cast by non perobject shadow(Only for directional light)
 | 
						||
			Shadow.TransmissionThickness = min(LightAttenuation.y, LightAttenuation.w);
 | 
						||
		}
 | 
						||
 | 
						||
		FLATTEN
 | 
						||
		if (LightData.ShadowedBits > 1 && LightData.ContactShadowLength > 0)
 | 
						||
		{
 | 
						||
			ContactShadowLength = LightData.ContactShadowLength * (LightData.ContactShadowLengthInWS ? 1.0f : ContactShadowLengthScreenScale);
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
#if SUPPORT_CONTACT_SHADOWS //接触阴影相关逻辑
 | 
						||
 | 
						||
#if STRATA_ENABLED == 0
 | 
						||
	if (LightData.ShadowedBits < 2 && (ShadingModelID == SHADINGMODELID_HAIR))
 | 
						||
	{
 | 
						||
		ContactShadowLength = 0.2 * ContactShadowLengthScreenScale;
 | 
						||
	}
 | 
						||
	// World space distance to cover eyelids and eyelashes but not beyond
 | 
						||
	if (ShadingModelID == SHADINGMODELID_EYE)
 | 
						||
	{
 | 
						||
		ContactShadowLength = 0.5;
 | 
						||
		
 | 
						||
	}
 | 
						||
#endif
 | 
						||
 | 
						||
	#if MATERIAL_CONTACT_SHADOWS
 | 
						||
		ContactShadowLength = 0.2 * ContactShadowLengthScreenScale;
 | 
						||
	#endif
 | 
						||
 | 
						||
	BRANCH
 | 
						||
	if (ContactShadowLength > 0.0)
 | 
						||
	{
 | 
						||
		float StepOffset = Dither - 0.5;
 | 
						||
		bool bHitCastContactShadow = false;
 | 
						||
		bool bHairNoShadowLight = ShadingModelID == SHADINGMODELID_HAIR && !LightData.ShadowedBits;
 | 
						||
		float HitDistance = ShadowRayCast( TranslatedWorldPosition, L, ContactShadowLength, 8, StepOffset, bHairNoShadowLight, bHitCastContactShadow );//通过RayMarching来计算是否HitContactShadow以及HitDistance。
 | 
						||
				
 | 
						||
		if ( HitDistance > 0.0 )
 | 
						||
		{
 | 
						||
			float ContactShadowOcclusion = bHitCastContactShadow ? LightData.ContactShadowCastingIntensity : LightData.ContactShadowNonCastingIntensity;
 | 
						||
 | 
						||
#if STRATA_ENABLED == 0
 | 
						||
			// Exponential attenuation is not applied on hair/eye/SSS-profile here, as the hit distance (shading-point to blocker) is different from the estimated 
 | 
						||
			// thickness (closest-point-from-light to shading-point), and this creates light leaks. Instead we consider first hit as a blocker (old behavior)
 | 
						||
			BRANCH
 | 
						||
			if (ContactShadowOcclusion > 0.0 && 
 | 
						||
				IsSubsurfaceModel(ShadingModelID) &&
 | 
						||
				ShadingModelID != SHADINGMODELID_HAIR &&
 | 
						||
				ShadingModelID != SHADINGMODELID_EYE &&
 | 
						||
				ShadingModelID != SHADINGMODELID_SUBSURFACE_PROFILE)
 | 
						||
			{
 | 
						||
				// Reduce the intensity of the shadow similar to the subsurface approximation used by the shadow maps path
 | 
						||
				// Note that this is imperfect as we don't really have the "nearest occluder to the light", but this should at least
 | 
						||
				// ensure that we don't darken-out the subsurface term with the contact shadows
 | 
						||
				float Density = SubsurfaceDensityFromOpacity(ContactShadowOpacity);
 | 
						||
				ContactShadowOcclusion *= 1.0 - saturate( exp( -Density * HitDistance ) );
 | 
						||
			}
 | 
						||
#endif
 | 
						||
			
 | 
						||
			float ContactShadow = 1.0 - ContactShadowOcclusion;
 | 
						||
			//根据是否命中赋予对应的ContactShadow亮度数值,之后乘以Shadow.SurfaceShadow与Shadow.TransmissionShadow。
 | 
						||
			Shadow.SurfaceShadow *= ContactShadow;
 | 
						||
			Shadow.TransmissionShadow *= ContactShadow;
 | 
						||
		}
 | 
						||
		
 | 
						||
	}
 | 
						||
#endif
 | 
						||
 | 
						||
	Shadow.HairTransmittance = LightData.HairTransmittance;
 | 
						||
	Shadow.HairTransmittance.OpaqueVisibility = Shadow.SurfaceShadow;
 | 
						||
}
 | 
						||
``` |