737 lines
36 KiB
Markdown
737 lines
36 KiB
Markdown
---
|
||
title: Untitled
|
||
date: 2024-02-04 12:57:56
|
||
excerpt:
|
||
tags:
|
||
rating: ⭐
|
||
---
|
||
# 前言
|
||
原文地址:https://www.cnblogs.com/timlly/p/15156626.html
|
||
|
||
# 概念
|
||
- FRenderResource:是渲染线程的渲染资源基础父类,实际的数据和逻辑由子类实现。可以认为是渲染线程中承载**CPU相关相关渲染的载体**。
|
||
- 比如输入的顶点数据、顶点Index数据、贴图数据等。
|
||
- FRHIResource:抽象了GPU侧的资源,也是众多RHI资源类型的父类。可以认为是承载**显卡API相关资源的载体**。
|
||
- 比如TextureSampler、TextureObject等。
|
||
- FRHICommand:其父类为**FRHICommandBase**结构体。其含有**FRHICommandBase* Next**用来保存下一个Command的指针,所以存储他的结构为**链表**。
|
||
- 含有接口:void void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext& DebugContext)。执行完就销毁。
|
||
- UE使用**FRHICOMMAND_MACRO**宏来快速定义各种RHICommand。主要功能包含:
|
||
- 数据和资源的设置、更新、清理、转换、拷贝、回读。
|
||
- 图元绘制。
|
||
- Pass、SubPass、场景、ViewPort等的开始和结束事件。
|
||
- 栅栏、等待、广播接口。
|
||
- 光线追踪。
|
||
- Slate、调试相关的命令。
|
||
- FRHICommandList:是**RHI的指令队列**,用来管理、执行一组FRHICommand的对象。
|
||
- 其子类有**FRHICommandListImmediate**(立即执行队列)、FRHIComputeCommandList_RecursiveHazardous与TRHIComputeCommandList_RecursiveHazardous(命令列表的递归使用)
|
||
- IRHICommandContext:是RHI的命令上下文接口类,定义了一组图形API相关的操作。在可以并行处理命令列表的平台上,它是一个单独的对象类。
|
||
- 主要的接口函数有:
|
||
- 派发ComputeShader
|
||
- 渲染查询(可见性?)
|
||
- 相关开始/结束函数。
|
||
- 设置数据(Viewport、GraphicsPipelineState等)
|
||
- 设置ShadserParameter
|
||
- 绘制图元
|
||
- 纹理拷贝/更新
|
||
- Raytracing
|
||
- IRHICommandContext的接口和FRHICommandList的接口高度相似且重叠。IRHICommandContext还有许多子类:
|
||
- IRHICommandContextPSOFallback:不支持真正的图形管道的RHI命令上下文。
|
||
- FNullDynamicRHI:空实现的动态绑定RHI。
|
||
- FOpenGLDynamicRHI:OpenGL的动态RHI。
|
||
- FD3D11DynamicRHI:D3D11的动态RHI。
|
||
- FMetalRHICommandContext:Metal平台的命令上下文。
|
||
- FD3D12CommandContextBase:D3D12的命令上下文。
|
||
- FVulkanCommandListContext:Vulkan平台的命令队列上下文。
|
||
- FEmptyDynamicRHI:动态绑定的RHI实现的接口。
|
||
- FValidationContext:校验上下文。
|
||
- IRHICommandContextContainer:IRHICommandContextContainer就是包含了IRHICommandContext对象的类型。相当于存储了一个或一组命令上下文的容器,以支持并行化地提交命令队列,只在D3D12、Metal、Vulkan等现代图形API中有实现。
|
||
- D3D12存储了FD3D12Adapter* Adapter、FD3D12CommandContext* CmdContext、 FD3D12CommandContextRedirector* CmdContextRedirector。
|
||
- FDynamicRHI:FDynamicRHI是由动态绑定的RHI实现的接口,它定义的接口和CommandList、CommandContext比较相似。
|
||
- 代码详见[[#FDynamicRHI]]
|
||
- FRHICommandListExecutor:负责将**Renderer层的RHI中间指令转译(或直接调用)到目标平台的图形API**,它在RHI体系中起着举足轻重的作用。
|
||
- FParallelCommandListSet:用于实现并行渲染。使用案例详见[[#FParallelCommandListSet]]。目前5.3只有下面2个子类:
|
||
- FRDGParallelCommandListSet
|
||
- FShadowParallelCommandListSet
|
||
|
||
## FDynamicRHI
|
||
```c++
|
||
class RHI_API FDynamicRHI
|
||
{
|
||
public:
|
||
virtual ~FDynamicRHI() {}
|
||
|
||
virtual void Init() = 0;
|
||
virtual void PostInit() {}
|
||
virtual void Shutdown() = 0;
|
||
|
||
void InitPixelFormatInfo(const TArray<uint32>& PixelFormatBlockBytesIn);
|
||
|
||
// ---- RHI接口 ----
|
||
|
||
// 下列接口要求FlushType: Thread safe
|
||
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) = 0;
|
||
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) = 0;
|
||
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) = 0;
|
||
virtual FBlendStateRHIRef RHICreateBlendState(const FBlendStateInitializerRHI& Initializer) = 0;
|
||
|
||
// 下列接口要求FlushType: Wait RHI Thread
|
||
virtual FVertexDeclarationRHIRef RHICreateVertexDeclaration(const FVertexDeclarationElementList& Elements) = 0;
|
||
virtual FPixelShaderRHIRef RHICreatePixelShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
virtual FVertexShaderRHIRef RHICreateVertexShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
virtual FHullShaderRHIRef RHICreateHullShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
virtual FDomainShaderRHIRef RHICreateDomainShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
virtual FGeometryShaderRHIRef RHICreateGeometryShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
virtual FComputeShaderRHIRef RHICreateComputeShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
|
||
|
||
// FlushType: Must be Thread-Safe.
|
||
virtual FRenderQueryPoolRHIRef RHICreateRenderQueryPool(ERenderQueryType QueryType, uint32 NumQueries = UINT32_MAX);
|
||
inline FComputeFenceRHIRef RHICreateComputeFence(const FName& Name);
|
||
|
||
virtual FGPUFenceRHIRef RHICreateGPUFence(const FName &Name);
|
||
virtual void RHICreateTransition(FRHITransition* Transition, ERHIPipeline SrcPipelines, ERHIPipeline DstPipelines, ERHICreateTransitionFlags CreateFlags, TArrayView<const FRHITransitionInfo> Infos);
|
||
virtual void RHIReleaseTransition(FRHITransition* Transition);
|
||
|
||
// FlushType: Thread safe.
|
||
virtual FStagingBufferRHIRef RHICreateStagingBuffer();
|
||
virtual void* RHILockStagingBuffer(FRHIStagingBuffer* StagingBuffer, FRHIGPUFence* Fence, uint32 Offset, uint32 SizeRHI);
|
||
virtual void RHIUnlockStagingBuffer(FRHIStagingBuffer* StagingBuffer);
|
||
|
||
// FlushType: Thread safe, but varies depending on the RHI
|
||
virtual FBoundShaderStateRHIRef RHICreateBoundShaderState(FRHIVertexDeclaration* VertexDeclaration, FRHIVertexShader* VertexShader, FRHIHullShader* HullShader, FRHIDomainShader* DomainShader, FRHIPixelShader* PixelShader, FRHIGeometryShader* GeometryShader) = 0;
|
||
// FlushType: Thread safe
|
||
virtual FGraphicsPipelineStateRHIRef RHICreateGraphicsPipelineState(const FGraphicsPipelineStateInitializer& Initializer);
|
||
|
||
// FlushType: Thread safe, but varies depending on the RHI
|
||
virtual FUniformBufferRHIRef RHICreateUniformBuffer(const void* Contents, const FRHIUniformBufferLayout& Layout, EUniformBufferUsage Usage, EUniformBufferValidation Validation) = 0;
|
||
virtual void RHIUpdateUniformBuffer(FRHIUniformBuffer* UniformBufferRHI, const void* Contents) = 0;
|
||
|
||
// FlushType: Wait RHI Thread
|
||
virtual FIndexBufferRHIRef RHICreateIndexBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
|
||
virtual void* RHILockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer, uint32 Offset, uint32 Size, EResourceLockMode LockMode);
|
||
virtual void RHIUnlockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer);
|
||
virtual void RHITransferIndexBufferUnderlyingResource(FRHIIndexBuffer* DestIndexBuffer, FRHIIndexBuffer* SrcIndexBuffer);
|
||
|
||
// FlushType: Wait RHI Thread
|
||
virtual FVertexBufferRHIRef RHICreateVertexBuffer(uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
|
||
// FlushType: Flush RHI Thread
|
||
virtual void* RHILockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
|
||
virtual void RHIUnlockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer);
|
||
// FlushType: Flush Immediate (seems dangerous)
|
||
virtual void RHICopyVertexBuffer(FRHIVertexBuffer* SourceBuffer, FRHIVertexBuffer* DestBuffer) = 0;
|
||
virtual void RHITransferVertexBufferUnderlyingResource(FRHIVertexBuffer* DestVertexBuffer, FRHIVertexBuffer* SrcVertexBuffer);
|
||
|
||
// FlushType: Wait RHI Thread
|
||
virtual FStructuredBufferRHIRef RHICreateStructuredBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
|
||
// FlushType: Flush RHI Thread
|
||
virtual void* RHILockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
|
||
virtual void RHIUnlockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer);
|
||
|
||
// FlushType: Wait RHI Thread
|
||
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHIStructuredBuffer* StructuredBuffer, bool bUseUAVCounter, bool bAppendBuffer) = 0;
|
||
// FlushType: Wait RHI Thread
|
||
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel) = 0;
|
||
// FlushType: Wait RHI Thread
|
||
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel, uint8 Format);
|
||
|
||
(......)
|
||
|
||
// RHI帧更新,须从主线程调用,FlushType: Thread safe
|
||
virtual void RHITick(float DeltaTime) = 0;
|
||
// 阻塞CPU直到GPU执行完成变成空闲. FlushType: Flush Immediate (seems wrong)
|
||
virtual void RHIBlockUntilGPUIdle() = 0;
|
||
// 开始当前帧,并确保GPU正在积极地工作 FlushType: Flush Immediate (copied from RHIBlockUntilGPUIdle)
|
||
virtual void RHISubmitCommandsAndFlushGPU() {};
|
||
|
||
// 通知RHI准备暂停它.
|
||
virtual void RHIBeginSuspendRendering() {};
|
||
// 暂停RHI渲染并将控制权交给系统的操作, FlushType: Thread safe
|
||
virtual void RHISuspendRendering() {};
|
||
// 继续RHI渲染, FlushType: Thread safe
|
||
virtual void RHIResumeRendering() {};
|
||
// FlushType: Flush Immediate
|
||
virtual bool RHIIsRenderingSuspended() { return false; };
|
||
|
||
// FlushType: called from render thread when RHI thread is flushed
|
||
// 仅在FRHIResource::FlushPendingDeletes内的延迟删除之前每帧调用.
|
||
virtual void RHIPerFrameRHIFlushComplete();
|
||
|
||
// 执行命令队列, FlushType: Wait RHI Thread
|
||
virtual void RHIExecuteCommandList(FRHICommandList* CmdList) = 0;
|
||
|
||
// FlushType: Flush RHI Thread
|
||
virtual void* RHIGetNativeDevice() = 0;
|
||
// FlushType: Flush RHI Thread
|
||
virtual void* RHIGetNativeInstance() = 0;
|
||
|
||
// 获取命令上下文. FlushType: Thread safe
|
||
virtual IRHICommandContext* RHIGetDefaultContext() = 0;
|
||
// 获取计算上下文. FlushType: Thread safe
|
||
virtual IRHIComputeContext* RHIGetDefaultAsyncComputeContext();
|
||
|
||
// FlushType: Thread safe
|
||
virtual class IRHICommandContextContainer* RHIGetCommandContextContainer(int32 Index, int32 Num) = 0;
|
||
|
||
// 直接由渲染线程调用的接口, 以优化RHI调用.
|
||
virtual FVertexBufferRHIRef CreateAndLockVertexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
|
||
virtual FIndexBufferRHIRef CreateAndLockIndexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
|
||
|
||
(......)
|
||
|
||
// Buffer Lock/Unlock
|
||
virtual void* LockVertexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
|
||
virtual void* LockIndexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
|
||
|
||
(......)
|
||
};
|
||
```
|
||
|
||
以上只显示了部分接口,其中部分接口要求从渲染线程调用,部分须从游戏线程调用。大多数接口在被调用前需刷新指定类型的命令,比如:
|
||
```c++
|
||
class RHI_API FDynamicRHI
|
||
{
|
||
// FlushType: Wait RHI Thread
|
||
void RHIExecuteCommandList(FRHICommandList* CmdList);
|
||
|
||
// FlushType: Flush Immediate
|
||
void RHIBlockUntilGPUIdle();
|
||
|
||
// FlushType: Thread safe
|
||
void RHITick(float DeltaTime);
|
||
};
|
||
```
|
||
可以在**FRHICommandListImmediate**的**ExecuteCommandList()**、**BlockUntilGPUIdle()**、**Tick()** 看到调用。
|
||
|
||
>需要注意的是,传统图形API(D3D11、OpenGL)除了继承FDynamicRHI,还需要继承**IRHICommandContextPSOFallback**,因为需要借助后者的接口处理PSO的数据和行为,以保证传统和现代API对PSO的一致处理行为。也正因为此,现代图形API(D3D12、Vulkan、Metal)不需要继承**IRHICommandContext**的任何继承体系的类型,单单直接继承**FDynamicRHI**就可以处理RHI层的所有数据和操作。
|
||
既然现代图形API(D3D12、Vulkan、Metal)的**DynamicRHI**没有继承**IRHICommandContext**的任何继承体系的类型,那么它们是如何实现FDynamicRHI::RHIGetDefaultContext的接口?下面以FD3D12DynamicRHI为例:
|
||
|
||
## FParallelCommandListSet
|
||
```c++
|
||
//Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp
|
||
void FDeferredShadingSceneRenderer::RenderPrePass(FRDGBuilder& GraphBuilder, FRDGTextureRef SceneDepthTexture, FInstanceCullingManager& InstanceCullingManager, FRDGTextureRef* FirstStageDepthBuffer)
|
||
{
|
||
RDG_EVENT_SCOPE(GraphBuilder, "PrePass %s %s", GetDepthDrawingModeString(DepthPass.EarlyZPassMode), GetDepthPassReason(DepthPass.bDitheredLODTransitionsUseStencil, ShaderPlatform));
|
||
RDG_CSV_STAT_EXCLUSIVE_SCOPE(GraphBuilder, RenderPrePass);
|
||
RDG_GPU_STAT_SCOPE(GraphBuilder, Prepass);
|
||
|
||
SCOPED_NAMED_EVENT(FDeferredShadingSceneRenderer_RenderPrePass, FColor::Emerald);
|
||
SCOPE_CYCLE_COUNTER(STAT_DepthDrawTime);
|
||
|
||
const bool bParallelDepthPass = GRHICommandList.UseParallelAlgorithms() && CVarParallelPrePass.GetValueOnRenderThread();
|
||
|
||
RenderPrePassHMD(GraphBuilder, SceneDepthTexture);
|
||
|
||
if (DepthPass.IsRasterStencilDitherEnabled())
|
||
{
|
||
AddDitheredStencilFillPass(GraphBuilder, Views, SceneDepthTexture, DepthPass);
|
||
}
|
||
|
||
auto RenderDepthPass = [&](uint8 DepthMeshPass)
|
||
{
|
||
check(DepthMeshPass == EMeshPass::DepthPass || DepthMeshPass == EMeshPass::SecondStageDepthPass);
|
||
const bool bSecondStageDepthPass = DepthMeshPass == EMeshPass::SecondStageDepthPass;
|
||
|
||
if (bParallelDepthPass)
|
||
{
|
||
RDG_WAIT_FOR_TASKS_CONDITIONAL(GraphBuilder, IsDepthPassWaitForTasksEnabled());
|
||
|
||
for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
|
||
{
|
||
FViewInfo& View = Views[ViewIndex];
|
||
RDG_GPU_MASK_SCOPE(GraphBuilder, View.GPUMask);
|
||
RDG_EVENT_SCOPE_CONDITIONAL(GraphBuilder, Views.Num() > 1, "View%d", ViewIndex);
|
||
|
||
FMeshPassProcessorRenderState DrawRenderState;
|
||
SetupDepthPassState(DrawRenderState);
|
||
|
||
const bool bShouldRenderView = View.ShouldRenderView() && (bSecondStageDepthPass ? View.bUsesSecondStageDepthPass : true);
|
||
if (bShouldRenderView)
|
||
{
|
||
View.BeginRenderView();
|
||
|
||
FDepthPassParameters* PassParameters = GetDepthPassParameters(GraphBuilder, View, SceneDepthTexture);
|
||
View.ParallelMeshDrawCommandPasses[DepthMeshPass].BuildRenderingCommands(GraphBuilder, Scene->GPUScene, PassParameters->InstanceCullingDrawParams);
|
||
|
||
GraphBuilder.AddPass(
|
||
bSecondStageDepthPass ? RDG_EVENT_NAME("SecondStageDepthPassParallel") : RDG_EVENT_NAME("DepthPassParallel"),
|
||
PassParameters,
|
||
ERDGPassFlags::Raster | ERDGPassFlags::SkipRenderPass,
|
||
[this, &View, PassParameters, DepthMeshPass](const FRDGPass* InPass, FRHICommandListImmediate& RHICmdList)
|
||
{
|
||
//并行渲染逻辑主要在这里
|
||
FRDGParallelCommandListSet ParallelCommandListSet(InPass, RHICmdList, GET_STATID(STAT_CLP_Prepass), View, FParallelCommandListBindings(PassParameters));
|
||
ParallelCommandListSet.SetHighPriority();
|
||
View.ParallelMeshDrawCommandPasses[DepthMeshPass].DispatchDraw(&ParallelCommandListSet, RHICmdList, &PassParameters->InstanceCullingDrawParams);
|
||
});
|
||
|
||
RenderPrePassEditorPrimitives(GraphBuilder, View, PassParameters, DrawRenderState, DepthPass.EarlyZPassMode, InstanceCullingManager);
|
||
}
|
||
}
|
||
}
|
||
···
|
||
}
|
||
|
||
//Engine\Source\Runtime\Renderer\Private\MeshDrawCommands.cpp
|
||
void FParallelMeshDrawCommandPass::DispatchDraw(FParallelCommandListSet* ParallelCommandListSet, FRHICommandList& RHICmdList, const FInstanceCullingDrawParams* InstanceCullingDrawParams) const
|
||
{
|
||
TRACE_CPUPROFILER_EVENT_SCOPE(ParallelMdcDispatchDraw);
|
||
if (MaxNumDraws <= 0)
|
||
{
|
||
return;
|
||
}
|
||
|
||
FMeshDrawCommandOverrideArgs OverrideArgs;
|
||
if (InstanceCullingDrawParams)
|
||
{
|
||
OverrideArgs = GetMeshDrawCommandOverrideArgs(*InstanceCullingDrawParams);
|
||
}
|
||
|
||
if (ParallelCommandListSet)
|
||
{
|
||
const ENamedThreads::Type RenderThread = ENamedThreads::GetRenderThread();
|
||
|
||
FGraphEventArray Prereqs;
|
||
if (ParallelCommandListSet->GetPrereqs())
|
||
{
|
||
Prereqs.Append(*ParallelCommandListSet->GetPrereqs());
|
||
}
|
||
if (TaskEventRef.IsValid())
|
||
{
|
||
Prereqs.Add(TaskEventRef);
|
||
}
|
||
|
||
// Distribute work evenly to the available task graph workers based on NumEstimatedDraws.
|
||
// Every task will then adjust it's working range based on FVisibleMeshDrawCommandProcessTask results.
|
||
const int32 NumThreads = FMath::Min<int32>(FTaskGraphInterface::Get().GetNumWorkerThreads(), ParallelCommandListSet->Width);
|
||
const int32 NumTasks = FMath::Min<int32>(NumThreads, FMath::DivideAndRoundUp(MaxNumDraws, ParallelCommandListSet->MinDrawsPerCommandList));
|
||
const int32 NumDrawsPerTask = FMath::DivideAndRoundUp(MaxNumDraws, NumTasks);
|
||
|
||
for (int32 TaskIndex = 0; TaskIndex < NumTasks; TaskIndex++)
|
||
{
|
||
const int32 StartIndex = TaskIndex * NumDrawsPerTask;
|
||
const int32 NumDraws = FMath::Min(NumDrawsPerTask, MaxNumDraws - StartIndex);
|
||
checkSlow(NumDraws > 0);
|
||
|
||
FRHICommandList* CmdList = ParallelCommandListSet->NewParallelCommandList();
|
||
|
||
FGraphEventRef AnyThreadCompletionEvent = TGraphTask<FDrawVisibleMeshCommandsAnyThreadTask>::CreateTask(&Prereqs, RenderThread)
|
||
.ConstructAndDispatchWhenReady(*CmdList, TaskContext.InstanceCullingContext, TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet,
|
||
OverrideArgs,
|
||
TaskContext.InstanceFactor,
|
||
TaskIndex, NumTasks);
|
||
|
||
ParallelCommandListSet->AddParallelCommandList(CmdList, AnyThreadCompletionEvent, NumDraws);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
QUICK_SCOPE_CYCLE_COUNTER(STAT_MeshPassDrawImmediate);
|
||
|
||
WaitForMeshPassSetupTask(IsInActualRenderingThread() ? EWaitThread::Render : EWaitThread::Task);
|
||
|
||
if (TaskContext.bUseGPUScene)
|
||
{
|
||
if (TaskContext.MeshDrawCommands.Num() > 0)
|
||
{
|
||
TaskContext.InstanceCullingContext.SubmitDrawCommands(
|
||
TaskContext.MeshDrawCommands,
|
||
TaskContext.MinimalPipelineStatePassSet,
|
||
OverrideArgs,
|
||
0,
|
||
TaskContext.MeshDrawCommands.Num(),
|
||
TaskContext.InstanceFactor,
|
||
RHICmdList);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
SubmitMeshDrawCommandsRange(TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, nullptr, 0, 0, TaskContext.bDynamicInstancing, 0, TaskContext.MeshDrawCommands.Num(), TaskContext.InstanceFactor, RHICmdList);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
## 普通Pass渲染
|
||
```c++
|
||
// 代码为UE5旧版本代码
|
||
// Engine\Source\Runtime\RHI\Public\RHIResources.h
|
||
|
||
// 渲染通道信息.
|
||
struct FRHIRenderPassInfo
|
||
{
|
||
// 渲染纹理信息.
|
||
struct FColorEntry
|
||
{
|
||
FRHITexture* RenderTarget;
|
||
FRHITexture* ResolveTarget;
|
||
int32 ArraySlice;
|
||
uint8 MipIndex;
|
||
ERenderTargetActions Action;
|
||
};
|
||
FColorEntry ColorRenderTargets[MaxSimultaneousRenderTargets];
|
||
|
||
// 深度模板信息.
|
||
struct FDepthStencilEntry
|
||
{
|
||
FRHITexture* DepthStencilTarget;
|
||
FRHITexture* ResolveTarget;
|
||
EDepthStencilTargetActions Action;
|
||
FExclusiveDepthStencil ExclusiveDepthStencil;
|
||
};
|
||
FDepthStencilEntry DepthStencilRenderTarget;
|
||
|
||
// 解析参数.
|
||
FResolveParams ResolveParameters;
|
||
|
||
// 部分RHI可以使用纹理来控制不同区域的采样和/或阴影分辨率
|
||
FTextureRHIRef FoveationTexture = nullptr;
|
||
|
||
// 部分RHI需要一个提示,遮挡查询将在这个渲染通道中使用
|
||
uint32 NumOcclusionQueries = 0;
|
||
bool bOcclusionQueries = false;
|
||
|
||
// 部分RHI需要知道,在为部分资源转换生成mip映射的情况下,这个渲染通道是否将读取和写入相同的纹理.
|
||
bool bGeneratingMips = false;
|
||
|
||
// 如果这个renderpass应该是多视图,则需要多少视图.
|
||
uint8 MultiViewCount = 0;
|
||
|
||
// 部分RHI的提示,渲染通道将有特定的子通道.
|
||
ESubpassHint SubpassHint = ESubpassHint::None;
|
||
|
||
// 是否太多UAV.
|
||
bool bTooManyUAVs = false;
|
||
bool bIsMSAA = false;
|
||
|
||
// 不同的构造函数.
|
||
|
||
// Color, no depth, optional resolve, optional mip, optional array slice
|
||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveRT = nullptr, uint32 InMipIndex = 0, int32 InArraySlice = -1);
|
||
// Color MRTs, no depth
|
||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction);
|
||
// Color MRTs, no depth
|
||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveTargets[]);
|
||
// Color MRTs and depth
|
||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Color MRTs and depth
|
||
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveRTs[], FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Depth, no color
|
||
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Depth, no color, occlusion queries
|
||
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, uint32 InNumOcclusionQueries, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Color and depth
|
||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Color and depth with resolve
|
||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
|
||
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
// Color and depth with resolve and optional sample density
|
||
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
|
||
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FRHITexture* InFoveationTexture, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
|
||
|
||
enum ENoRenderTargets
|
||
{
|
||
NoRenderTargets,
|
||
};
|
||
explicit FRHIRenderPassInfo(ENoRenderTargets Dummy);
|
||
explicit FRHIRenderPassInfo();
|
||
|
||
inline int32 GetNumColorRenderTargets() const;
|
||
RHI_API void Validate() const;
|
||
RHI_API void ConvertToRenderTargetsInfo(FRHISetRenderTargetsInfo& OutRTInfo) const;
|
||
|
||
(......)
|
||
};
|
||
|
||
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
|
||
|
||
class RHI_API FRHICommandList : public FRHIComputeCommandList
|
||
{
|
||
public:
|
||
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
|
||
{
|
||
if (InInfo.bTooManyUAVs)
|
||
{
|
||
UE_LOG(LogRHI, Warning, TEXT("RenderPass %s has too many UAVs"));
|
||
}
|
||
InInfo.Validate();
|
||
|
||
// 直接调用RHI的接口.
|
||
if (Bypass())
|
||
{
|
||
GetContext().RHIBeginRenderPass(InInfo, Name);
|
||
}
|
||
// 分配RHI命令.
|
||
else
|
||
{
|
||
TCHAR* NameCopy = AllocString(Name);
|
||
ALLOC_COMMAND(FRHICommandBeginRenderPass)(InInfo, NameCopy);
|
||
}
|
||
// 设置在RenderPass内标记.
|
||
Data.bInsideRenderPass = true;
|
||
|
||
// 缓存活动的RT.
|
||
CacheActiveRenderTargets(InInfo);
|
||
// 重置子Pass.
|
||
ResetSubpass(InInfo.SubpassHint);
|
||
Data.bInsideRenderPass = true;
|
||
}
|
||
|
||
void EndRenderPass()
|
||
{
|
||
// 调用或分配RHI接口.
|
||
if (Bypass())
|
||
{
|
||
GetContext().RHIEndRenderPass();
|
||
}
|
||
else
|
||
{
|
||
ALLOC_COMMAND(FRHICommandEndRenderPass)();
|
||
}
|
||
// 重置在RenderPass内标记.
|
||
Data.bInsideRenderPass = false;
|
||
// 重置子Pass标记为None.
|
||
ResetSubpass(ESubpassHint::None);
|
||
}
|
||
};
|
||
```
|
||
|
||
它们的使用案例如下:
|
||
主要是`FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore)`与`RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"))`
|
||
```c++
|
||
bool FRHIDrawTests::Test_MultiDrawIndirect(FRHICommandListImmediate& RHICmdList)
|
||
{
|
||
if (!GRHIGlobals.SupportsMultiDrawIndirect)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
// Probably could/should automatically enable in the outer scope when running RHI Unit Tests
|
||
// RenderCaptureInterface::FScopedCapture RenderCapture(true /*bEnable*/, &RHICmdList, TEXT("Test_MultiDrawIndirect"));
|
||
|
||
static constexpr uint32 MaxInstances = 8;
|
||
|
||
// D3D12 does not have a way to get the base instance ID (SV_InstanceID always starts from 0), so we must emulate it...
|
||
const uint32 InstanceIDs[MaxInstances] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
||
FBufferRHIRef InstanceIDBuffer = CreateBufferWithData(EBufferUsageFlags::VertexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_InstanceID"), MakeArrayView(InstanceIDs));
|
||
|
||
FVertexDeclarationElementList VertexDeclarationElements;
|
||
VertexDeclarationElements.Add(FVertexElement(0, 0, VET_UInt, 0, 4, true /*per instance frequency*/));
|
||
FVertexDeclarationRHIRef VertexDeclarationRHI = PipelineStateCache::GetOrCreateVertexDeclaration(VertexDeclarationElements);
|
||
|
||
const uint16 Indices[3] = { 0, 1, 2 };
|
||
FBufferRHIRef IndexBuffer = CreateBufferWithData(EBufferUsageFlags::IndexBuffer, ERHIAccess::VertexOrIndexBuffer, TEXT("Test_MultiDrawIndirect_IndexBuffer"), MakeArrayView(Indices));
|
||
|
||
static constexpr uint32 OutputBufferStride = sizeof(uint32);
|
||
static constexpr uint32 OutputBufferSize = OutputBufferStride * MaxInstances;
|
||
FRHIResourceCreateInfo OutputBufferCreateInfo(TEXT("Test_MultiDrawIndirect_OutputBuffer"));
|
||
FBufferRHIRef OutputBuffer = RHICmdList.CreateBuffer(OutputBufferSize, EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::SourceCopy, OutputBufferStride, ERHIAccess::UAVCompute, OutputBufferCreateInfo);
|
||
|
||
const uint32 CountValues[4] = { 1, 1, 16, 0 };
|
||
FBufferRHIRef CountBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess, ERHIAccess::IndirectArgs, TEXT("Test_MultiDrawIndirect_Count"), MakeArrayView(CountValues));
|
||
|
||
const FRHIDrawIndexedIndirectParameters DrawArgs[] =
|
||
{
|
||
// IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation
|
||
{3, 1, 0, 0, 0}, // fill slot 0
|
||
// gap in slot 1
|
||
{3, 2, 0, 0, 2}, // fill slots 2, 3 using 1 sub-draw
|
||
// gap in slot 4
|
||
{3, 1, 0, 0, 5}, // fill slots 5, 6 using 2 sub-draws
|
||
{3, 1, 0, 0, 6},
|
||
{3, 1, 0, 0, 7}, // this draw is expected to never execute
|
||
};
|
||
|
||
const uint32 ExpectedDrawnInstances[MaxInstances] = { 1, 0, 1, 1, 0, 1, 1, 0 };
|
||
|
||
FBufferRHIRef DrawArgBuffer = CreateBufferWithData(EBufferUsageFlags::DrawIndirect | EBufferUsageFlags::UnorderedAccess | EBufferUsageFlags::VertexBuffer, ERHIAccess::IndirectArgs,
|
||
TEXT("Test_MultiDrawIndirect_DrawArgs"), MakeArrayView(DrawArgs));
|
||
|
||
FUnorderedAccessViewRHIRef OutputBufferUAV = RHICmdList.CreateUnorderedAccessView(OutputBuffer,
|
||
FRHIViewDesc::CreateBufferUAV()
|
||
.SetType(FRHIViewDesc::EBufferType::Typed)
|
||
.SetFormat(PF_R32_UINT));
|
||
|
||
RHICmdList.ClearUAVUint(OutputBufferUAV, FUintVector4(0));
|
||
|
||
const FIntPoint RenderTargetSize(4, 4);
|
||
FRHITextureDesc RenderTargetTextureDesc(ETextureDimension::Texture2D, ETextureCreateFlags::RenderTargetable, PF_B8G8R8A8, FClearValueBinding(), RenderTargetSize, 1, 1, 1, 1, 0);
|
||
FRHITextureCreateDesc RenderTargetCreateDesc(RenderTargetTextureDesc, ERHIAccess::RTV, TEXT("Test_MultiDrawIndirect_RenderTarget"));
|
||
FTextureRHIRef RenderTarget = RHICreateTexture(RenderTargetCreateDesc);
|
||
|
||
TShaderMapRef<FTestDrawInstancedVS> VertexShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
|
||
TShaderMapRef<FTestDrawInstancedPS> PixelShader(GetGlobalShaderMap(GMaxRHIFeatureLevel));
|
||
|
||
FGraphicsPipelineStateInitializer GraphicsPSOInit;
|
||
|
||
GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
|
||
GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = VertexDeclarationRHI;
|
||
GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();
|
||
GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState<false, CF_Always>::GetRHI();
|
||
GraphicsPSOInit.BlendState = TStaticBlendState<>::GetRHI();
|
||
GraphicsPSOInit.RasterizerState = TStaticRasterizerState<>::GetRHI();
|
||
GraphicsPSOInit.PrimitiveType = EPrimitiveType::PT_TriangleList;
|
||
|
||
FRHITexture* ColorRTs[1] = { RenderTarget.GetReference() };
|
||
FRHIRenderPassInfo RenderPassInfo(1, ColorRTs, ERenderTargetActions::DontLoad_DontStore);
|
||
|
||
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVCompute, ERHIAccess::UAVGraphics, EResourceTransitionFlags::None));
|
||
RHICmdList.BeginUAVOverlap(); // Output UAV can be written without syncs between draws (each draw is expected to write into different slots)
|
||
|
||
RHICmdList.BeginRenderPass(RenderPassInfo, TEXT("Test_MultiDrawIndirect"));
|
||
RHICmdList.SetViewport(0, 0, 0, float(RenderTargetSize.X), float(RenderTargetSize.Y), 1);
|
||
|
||
RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
|
||
SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit, 0);
|
||
|
||
check(InstanceIDBuffer->GetStride() == 4);
|
||
RHICmdList.SetStreamSource(0, InstanceIDBuffer, 0);
|
||
|
||
FRHIBatchedShaderParameters ShaderParameters;
|
||
ShaderParameters.SetUAVParameter(PixelShader->OutDrawnInstances.GetBaseIndex(), OutputBufferUAV);
|
||
RHICmdList.SetBatchedShaderParameters(PixelShader.GetPixelShader(), ShaderParameters);
|
||
|
||
const uint32 DrawArgsStride = sizeof(DrawArgs[0]);
|
||
const uint32 CountStride = sizeof(CountValues[0]);
|
||
|
||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||
DrawArgBuffer, DrawArgsStride*0, // 1 sub-draw with instance index 0
|
||
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
|
||
5 // expect to draw only 1 instance due to GPU-side upper bound
|
||
);
|
||
|
||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||
DrawArgBuffer, DrawArgsStride*1, // 1 sub-draw with 2 instances at base index 2
|
||
CountBuffer, CountStride*1, // count buffer contains 1 in this slot
|
||
4 // expect to draw only 1 instance due to GPU-side upper bound
|
||
);
|
||
|
||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||
DrawArgBuffer, DrawArgsStride*2, // 2 sub-draws with 1 instance each starting at base index 5
|
||
CountBuffer, CountStride*2, // count buffer contains 16 in this slot
|
||
2 // expect to draw only 2 instances due to CPU-side upper bound
|
||
);
|
||
|
||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
|
||
CountBuffer, CountStride*3, // count buffer contains 0 in this slot
|
||
1 // expect to skip the draw due to GPU-side count of 0
|
||
);
|
||
|
||
RHICmdList.MultiDrawIndexedPrimitiveIndirect(IndexBuffer,
|
||
DrawArgBuffer, DrawArgsStride*4, // 1 sub-draw with 1 instance each starting at base index 7
|
||
CountBuffer, CountStride*0, // count buffer contains 1 in this slot
|
||
0 // expect to skip the draw due to CPU-side count of 0
|
||
);
|
||
|
||
RHICmdList.EndRenderPass();
|
||
|
||
RHICmdList.EndUAVOverlap();
|
||
|
||
RHICmdList.Transition(FRHITransitionInfo(OutputBufferUAV, ERHIAccess::UAVGraphics, ERHIAccess::CopySrc, EResourceTransitionFlags::None));
|
||
|
||
TConstArrayView<uint8> ExpectedOutputView = MakeArrayView(reinterpret_cast<const uint8*>(ExpectedDrawnInstances), sizeof(ExpectedDrawnInstances));
|
||
bool bSucceeded = FRHIBufferTests::VerifyBufferContents(TEXT("Test_MultiDrawIndirect"), RHICmdList, OutputBuffer, ExpectedOutputView);
|
||
|
||
return bSucceeded;
|
||
}
|
||
```
|
||
|
||
## Subpass
|
||
先说一下Subpass的由来、作用和特点。
|
||
|
||
在传统的多Pass渲染中,每个Pass结束时通常会渲染出一组渲染纹理,部分成为着色器参数提供给下一个Pass采样读取。这种纹理采样方式不受任何限制,可以读取任意的领域像素,使用任意的纹理过滤方式。这种方式虽然使用灵活,但在TBR(Tile-Based Renderer)硬件架构的设备中会有较大的消耗:渲染纹理的Pass通常会将渲染结果存储在On-chip的Tile Memory中,待Pass结束后会写回GPU显存(VRAM)中,写回GPU显存是个耗时耗耗电的操作。
|
||
|
||

|
||
|
||
_传统多Pass之间的内存存取模型,多次发生于On-Chip和全局存储器之间。_
|
||
|
||
如果出现一种特殊的纹理使用情况:上一个Pass渲染处理的纹理,立即被下一个Pass使用,并且下一个Pass只采样像素位置自身的数据,而不需要采样邻域像素的位置。这种情况就符合了Subpass的使用情景。使用Subpass渲染的纹理结果只会存储在Tile Memory中,在Subpass结束后不会写回VRAM,而直接提供Tile Memory的数据给下一个Subpass采样读取。这样就避免了传统Pass结束写回GPU显存以及下一个Pass又从GPU显存读数据的耗时耗电操作,从而提升了性能。
|
||
|
||

|
||
|
||
_Subpass之间的内存存取模型,都发生在On-Chip内。_
|
||
|
||
Subpass的相关代码主要集中在移动端中。UE涉及Subpass的接口和类型如下:
|
||
```c++
|
||
// 提供给RHI的Subpass标记.
|
||
enum class ESubpassHint : uint8
|
||
{
|
||
None, // 传统渲染(非Subpass)
|
||
DepthReadSubpass, // 深度读取Subpass.
|
||
DeferredShadingSubpass, // 移动端延迟着色Subpass.
|
||
};
|
||
|
||
|
||
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
|
||
|
||
class RHI_API FRHICommandListBase : public FNoncopyable
|
||
{
|
||
(......)
|
||
|
||
protected:
|
||
// PSO上下文.
|
||
struct FPSOContext
|
||
{
|
||
uint32 CachedNumSimultanousRenderTargets = 0;
|
||
TStaticArray<FRHIRenderTargetView, MaxSimultaneousRenderTargets> CachedRenderTargets;
|
||
FRHIDepthRenderTargetView CachedDepthStencilTarget;
|
||
|
||
// Subpass提示标记.
|
||
ESubpassHint SubpassHint = ESubpassHint::None;
|
||
uint8 SubpassIndex = 0;
|
||
uint8 MultiViewCount = 0;
|
||
bool HasFragmentDensityAttachment = false;
|
||
} PSOContext;
|
||
};
|
||
|
||
class RHI_API FRHICommandList : public FRHIComputeCommandList
|
||
{
|
||
public:
|
||
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
|
||
{
|
||
(......)
|
||
|
||
CacheActiveRenderTargets(InInfo);
|
||
// 设置Subpass数据.
|
||
ResetSubpass(InInfo.SubpassHint);
|
||
Data.bInsideRenderPass = true;
|
||
}
|
||
|
||
void EndRenderPass()
|
||
{
|
||
(......)
|
||
|
||
// 重置Subpass标记为None.
|
||
ResetSubpass(ESubpassHint::None);
|
||
}
|
||
|
||
// 下一个Subpass.
|
||
void NextSubpass()
|
||
{
|
||
// 分配或调用RHI接口.
|
||
if (Bypass())
|
||
{
|
||
GetContext().RHINextSubpass();
|
||
}
|
||
else
|
||
{
|
||
ALLOC_COMMAND(FRHICommandNextSubpass)();
|
||
}
|
||
|
||
// 增加Subpass计数.
|
||
IncrementSubpass();
|
||
}
|
||
|
||
// 增加subpass计数.
|
||
void IncrementSubpass()
|
||
{
|
||
PSOContext.SubpassIndex++;
|
||
}
|
||
|
||
// 重置Subpass数据.
|
||
void ResetSubpass(ESubpassHint SubpassHint)
|
||
{
|
||
PSOContext.SubpassHint = SubpassHint;
|
||
PSOContext.SubpassIndex = 0;
|
||
}
|
||
};
|
||
``` |